Article contents
DIRECTIONAL MAXIMAL OPERATORS AND RADIAL WEIGHTS ON THE PLANE
Published online by Cambridge University Press: 12 September 2013
Abstract
Let $\Omega $ be the set of unit vectors and
$w$ be a radial weight on the plane. We consider the weighted directional maximal operator defined by
$$\begin{eqnarray*}{M}_{\Omega , w} f(x): = \sup _{x\in R\in \mathcal{B} _{\Omega }}\frac{1}{w(R)} \int \nolimits \nolimits_{R} \vert f(y)\vert w(y)\hspace{0.167em} dy,\end{eqnarray*}$$
${ \mathcal{B} }_{\Omega } $ denotes the set of all rectangles on the plane whose longest side is parallel to some unit vector in
$\Omega $ and
$w(R)$ denotes
$\int \nolimits \nolimits_{R} w$. In this paper we prove an almost-orthogonality principle for this maximal operator under certain conditions on the weight. The condition allows us to get the weighted norm inequality
$$\begin{eqnarray*}\Vert {M}_{\Omega , w} f\mathop{\Vert }\nolimits_{{L}^{2} (w)} \leq C\log N\Vert f\mathop{\Vert }\nolimits_{{L}^{2} (w)} ,\end{eqnarray*}$$
$w(x)= \vert x\hspace{-1.2pt}\mathop{\vert }\nolimits ^{a} $,
$a\gt 0$, and when
$\Omega $ is the set of unit vectors on the plane with cardinality
$N$ sufficiently large.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright ©2013 Australian Mathematical Publishing Association Inc.
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:87112:20160414053131999-0413:S0004972713000804_inline13.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:35535:20160414053131999-0413:S0004972713000804_inline14.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:28676:20160414053131999-0413:S0004972713000804_inline15.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:39221:20160414053131999-0413:S0004972713000804_inline16.gif?pub-status=live)
- 1
- Cited by