Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T10:21:36.248Z Has data issue: false hasContentIssue false

Direct sums of indecomposable injective modules

Published online by Cambridge University Press:  17 April 2009

Sang Cheol Lee
Affiliation:
Department of Mathematics Education, Chonbuk National University, Chonju, Chonbuk 561–756Korea e-mail: [email protected]
Dong Soo Lee
Affiliation:
Department of Mathematics, Chungnam National University, Taejon 305–764, Korea e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper proves that every direct summand N of a direct sum of indecomposable injective submodules of a module is the sum of a direct sum of indecomposable injective submodules and a sum of indecomposable injective submodules of Z2(N).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Anderson, F.W. and Fuller, K.R., Rings and categories of modules, (Second Edition) (Springer-Verlag, Berlin, Heidelberg, New York, 1992).CrossRefGoogle Scholar
[2]Goodearl, K.R., Ring theory. Nonsingular rings and modules, Pure and Applied Mathematics 33 (Marcel Dekker, Inc., New York, Basel, 1976).Google Scholar
[3]Goodearl, K.R. and Warfield, R.B. Jr, An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts 16 (Cambridge University Press, Cambridge, New York, 1989).Google Scholar
[4]Harada, M., Factor categories with applications to direct decomposition of modules, Notes in Pure and Applied Mathematics 88 (Marcel Dekker, New York, 1983).Google Scholar
[5]Sharpe, D.W. and Vámos, P., Injective modules, Cambridge Tracts in Mathematics and Mathematical Physics 62 (Cambridge, London, New York, 1972).Google Scholar
[6]Smith, P.F. and Tercan, A., ‘Generalizations of CS-Modules’, Comm. Algebra 21 (1993), 18091847.CrossRefGoogle Scholar
[7]Stenström, B., Rings of quotients (Springer-Verlag, Berlin, Heidelberg, New York, 1975).CrossRefGoogle Scholar
[8]Yu, H.-P., ‘On Krull-Schmidt and a problem of Matlis’, Comm. Algebra 24 (1996), 28512858.CrossRefGoogle Scholar