No CrossRef data available.
Article contents
DIRAC OPERATORS ON ORIENTIFOLDS
Published online by Cambridge University Press: 30 October 2020
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
![Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'](https://static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0004972720001185/resource/name/firstPage-S0004972720001185a.jpg)
MSC classification
Primary:
55N32: Orbifold cohomology
- Type
- Abstracts of Australasian PhD Theses
- Information
- Bulletin of the Australian Mathematical Society , Volume 104 , Issue 1 , August 2021 , pp. 167 - 168
- Copyright
- © 2020 Australian Mathematical Publishing Association Inc.
Footnotes
Thesis submitted to the Australian National University in February 2020; degree approved on 23 March 2020; primary supervisor Bai-Ling Wang, co-supervisors Peter Bouwknegt and Alan Carey.
References
Atiyah, M. F., ‘
K-theory and reality’, Q. J. Math. Oxford Ser. 17(2) (1966), 367–386.CrossRefGoogle Scholar
Baum, P. and Connes, A., ‘Geometric
$K$
-theory for Lie groups and foliations’, Enseign. Math. (2) 46(1–2) (2000), 3–42.Google Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210630025708692-0519:S0004972720001185:S0004972720001185_inline1.png?pub-status=live)
Baum, P. and Douglas, R. G., ‘
$K$
homology and index theory’, Operator Algebras and Applications , Part I (Kingston, Ont., 1980), Proceedings of Symposia in Pure Mathematics, 38 (American Mathematical Society, Providence, RI, 1982), 117–173.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210630025708692-0519:S0004972720001185:S0004972720001185_inline2.png?pub-status=live)
Freed, D. S. and Moore, G. W., ‘Twisted equivariant matter’, Ann. Henri Poincaré 14 (2013), 1927–2023.CrossRefGoogle Scholar
Lawson, H. B. Jr and Michelsohn, M.-L., Spin Geometry, Princeton Mathematical Series, 38 (Princeton University Press, Princeton, NJ, 1989).Google Scholar