Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T18:08:45.607Z Has data issue: false hasContentIssue false

A differentiation in locally convex spaces

Published online by Cambridge University Press:  17 April 2009

Sadayuki Yamamuro
Affiliation:
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The theory of F-finite linear operators developed by Robert T. Moore is used to construct a differential calculus in locally convex spaces. This note contains the fundamental theory up to the implicit function theorem.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1975

References

[1]Garnir, H.G., Schmets, M. De Wilde et J., Analyse fonationnelle. Théorie oonstruetive des espaces linéaires à semi-normes. I: Théorie générale (Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften. Mathematische Reihe, 36. Birkhäuser Verlag, Basel und Stuttgart, 1968).Google Scholar
[2]Marinescu, G., “Théorèmes des contractions dans les espaces localement convexes”, Rev. Roumaine Math. Pures Appl. 14 (1969), 15351538.Google Scholar
[3]Moore, Robert T., “Banach algebras of operators on locally convex spaces”, Bull. Amer. Math. Soc. 75 (1969), 6873.CrossRefGoogle Scholar
[4]Smale, S., “An infinite dimensional version of Sard's theorem”, Amer. J. Math. 87 (1965), 861866.CrossRefGoogle Scholar
[5]Yamamuro, Sadayuki, Differential calculus in topological linear spaces (Lecture Notes in Mathematics, 374. Springer-Verlag, Berlin, Heidelberg, New York, 1974.)CrossRefGoogle Scholar
[6]Yamamuro, S., “Notes on differential calculus in topologieal linear spaces, II”, J. Austral. Math. Soc. (to appear).Google Scholar
[7]Yamamuro, S., “Notes on differential calculus in topologieal linear spaces, III”, J. Austral. Math. Soc. (to appear).Google Scholar
[8]Yamamuro, S. and Grunau, John, “Notes on differential calculus in topologieal linear spaces”, J. reine angew. Math. (to appear).Google Scholar