Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T14:01:53.007Z Has data issue: false hasContentIssue false

Differential forms with values in groups

Published online by Cambridge University Press:  17 April 2009

Anders Kock
Affiliation:
Matematisk Institut, Aarhus Universitet, Aarhus, Denmark.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the context of synthetic differential geometry, we present a notion of differential form with values in a group object, typically a Lie group or the group of all diffeomorphisms of a manifold. Natural geometric examples of such forms and the role of their exterior differentiation is given. The main result is a comparison with the classical theory of Lie algebra valued forms.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1982

References

[1]Dubuc, Eduardo J., “Sur les modèles de la géométrie differentielle synthétiqueCahiers Topologie Géom. Différentielle 20 (1979), 231279.Google Scholar
[2]Ehresmann, Charles, “Les connexions infinitésimales dans un espace fibré différentiable”, Colloque de topologie (espaces fibrés), Bruxelles, 1950, 2955 (Georges Thone, Liège; Masson, Paris; 1951).Google Scholar
[3]Ehresmann, Charles, “Catégories inductives et pseudogroupes”, Ann. Inst. Fourier (Grenoble) 10 (1960), 307332.CrossRefGoogle Scholar
[4]Griffiths, P., “On Cartans' method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry1”, Duke Math. J. 41 (1974), 775814.Google Scholar
[5]Haefliger, André, “Cohomology of Lie algebras and foliations”, Differential topology, foliations and Gelfand-Fuks cohomology, 112 (Proc. Sympos. Pontifica Universidade Católica do Rio de Janeiro, 1976. Lecture Notes in Mathematics, 652. Springer-Verlag, Berlin, Heidelberg, New York, 1978).CrossRefGoogle Scholar
[6]Hermann, Robert, “On the differential geometry of foliations”, Ann. of Math. 72 (1960), 445457.Google Scholar
[7]Kock, Anders, “Taylor series calculus for ring objects of line type”, J. Pure Appl. Algebra 12 (1978), 271293.Google Scholar
[8]Kock, Anders, “On the synthetic theory of vector fields”, Topos theoretic methods in geometry, 139157 (Various Publications Series, 30. Matematisk Institut, Aarhus Universitet, Aarhus, 1979).Google Scholar
[9]Kock, Anders, “Properties of well-adapted models for synthetic differential geometry”, J. Pure Appl. Algebra 20 (1981), 5570.CrossRefGoogle Scholar
[10]Kock, Anders, “Formal manifolds and synthetic theory of jet bundles”, Cahiers Topologie Géom. Différentielle 21 (1980), 227246.Google Scholar
[11]Kock, Anders, Synthetic differential geometry (London Mathematical Society Lecture Notes, 51. Cambridge University Press, Cambridge, 1981).Google Scholar
[12]Kock, A. and Reyes, G.E., “Models for synthetic integration theory”, Math. Scand. 48 (1981), 145152.Google Scholar
[13]Kock, A., Reyes, G.E., Veit, and B., Forms and integration in synthetic differential geometry (Aarhus Preprint Series, 31. Matematisk Institut, Aarhus Universitet, Aarhus, 1979/1980).Google Scholar
[14]Reyes, G.E. and Wraith, G.C., A note on tangent bundles in a category with a ring object”, Math. Scand. 42 (1978), 5363.Google Scholar