Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T23:26:11.159Z Has data issue: false hasContentIssue false

DEFORMATIONS OF DIFFERENTIAL ARCS

Published online by Cambridge University Press:  16 August 2016

DAVID BOURQUI*
Affiliation:
Institut de recherche mathématique de Rennes, UMR 6625 du CNRS, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France email [email protected]
JULIEN SEBAG
Affiliation:
Institut de recherche mathématique de Rennes, UMR 6625 du CNRS, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $k$ be field of characteristic zero. Let $f\in k[X,Y]$ be a nonconstant polynomial. We prove that the space of differential (formal) deformations of any formal general solution of the associated ordinary differential equation $f(y^{\prime },y)=0$ is isomorphic to the formal disc $\text{Spf}(k[[Z]])$.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Arnold, V., Chapitres supplémentaires de la théorie des équations différentielles ordinaires (Mir, Moscow, 1984), (in French), translated from the Russian by Djilali Embarek, reprint of the 1980 edition.Google Scholar
Bourqui, D. and Sebag, J., ‘The Drinfeld–Grinberg–Kazhdan theorem for formal schemes and singularity theory’, Preprint (2015).Google Scholar
Bourqui, D. and Sebag, J., ‘The Drinfeld–Grinberg–Kazhdan theorem is false for singular arcs’, J. Inst. Math. Jussieu, to appear.Google Scholar
Bruschek, C. and Hauser, H., ‘Arcs, cords, and felts – six instances of the linearization principle’, Amer. J. Math. 132(4) (2010), 941986.Google Scholar
Drinfeld, V., ‘On the Grinberg–Kazhdan formal arc theorem’, Preprint, 2002, arXiv:math/0203263.Google Scholar
Grinberg, M. and Kazhdan, D., ‘Versal deformations of formal arcs’, Geom. Funct. Anal. 10(3) (2000), 543555.Google Scholar