Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T14:52:23.099Z Has data issue: false hasContentIssue false

Defining relations for the Held-Higman-Thompson simple group

Published online by Cambridge University Press:  17 April 2009

John J. Cannon
Affiliation:
Department of Pure Mathematics, University of Sydney, Sydney, New South Wales;
George Havas
Affiliation:
School of Information Sciences, Canberra College of Advanced Education, Canberra, ACT.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A set of defining relations for the Held-Higman-Thompson simple group of order 4 030 387 200 is given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1974

References

[1]Cannon, John J. and Havas, George, “Applications of the Todd-Coxeter algorithm”, (Computer-aided Mathematics Project, Technical Report, 6. Department of Pure Mathematics, University of Sydney, Sydney, 1974).Google Scholar
[2]Havas, George, “A Reidemeister-Schreier program”, Proc. Second Internat. Conf. Theory of Groups, Canberra, 1973, 347356 (Lecture Notes in Mathematics, 372. Springer-Verlag, Berlin, Heidelberg, New York, 1974).Google Scholar
[3]Held, Dieter, “The simple groups related to M 24”, J. Algebra 13 (1969), 253296.CrossRefGoogle Scholar
[4]Lepique, Evelyn, “Ein Programm zur Berechnung von Untergruppen von gegebenem Index in endlich präsentierten Gruppen” (Diplomarbeit, Rheinisch-Westfälische Technische Hochschule, Aachen, 1972).Google Scholar
[5]McKay, John, “Computing with finite simple groups”, Proc. Second Internat. Conf. Theory of Groups, Canberra 1973, 448452. (Lecture Notes in Mathematics, 372. Springer-Verlag, Berlin, Heidelberg, New York, 1974).Google Scholar