Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T18:03:38.315Z Has data issue: false hasContentIssue false

Cylindrical representations of some infinite dimensional nuclear Lie groups

Published online by Cambridge University Press:  17 April 2009

Jean Marion
Affiliation:
Département de Mathématiques Faculté des Sciences, Case 901 163, Avenue de Luminy 13288 Marseille, Cedex 9, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Γ.𝒜 be the semi-direct product group of a nuclear Lie group Γ with the additive group 𝒜 of a real nuclear vector space. We give an explicit description of all the continuous representations of Γ.𝒜 the restriction of which to 𝒜 is a cyclic unitary representation, and a necessary and sufficient condition for the unitarity of such cylindrical representations is stated. This general result is successfully used to obtain irreducible unitary representations of the nuclear Lie groups of Riemannian motions, and, in the setting of the theory of multiplicative distributions initiated by I.M. Gelfand, it is proved that for any connected real finite dimensional Lie group G and for any strictly positive integer k there exist non located and non trivially decomposable representations of order k of the nuclear Lie group (M;G) of all the G-valued test-functions on a given paracompact manifold M.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1]Albeverio, S. and Høegh-Krohn, R., ‘The energy representations of Sobolev Lie groups’, Comput. Math. Appl. 36 (1978), 3752.Google Scholar
[2]Albeverio, S., Høegh-Krohn, R. and Testard, D., ‘Reducibility and irreducibility for the energy representations of the group of mappings of a Riemannian manifold into a compact Lie group’, J. Funct. Anal. 41 (1981), 387396.CrossRefGoogle Scholar
[3]Albeverio, S., Høegh-Krohn, R., Marion, J., Testard, D. and Torresani, B., ‘Non commutative distributions’ (to appear).Google Scholar
[4]Cirelli, R. and Maniá, A., ‘The group of gauge transformations as a Schwartz-Lie group’, J. Math. Phys. 59 (1985), 126147.Google Scholar
[5]Date, E., Jimbo, M., Kashiwara, M. and Miwa, T., ‘Transformations groups for soliton equations’, Publ. Res. Inst. Math. Sci. 18 (1982), 10771110.CrossRefGoogle Scholar
[6]Delorme, P., ‘Irréductibilité de certaines représentations de G(x)’, J. Funct. Anal. 30 (1978), 3647.Google Scholar
[7]Gelfand, I.M. and Graev, M.I., ‘Representations of the quaternionic group over a locally compact field of functions’, Funktsional Anal, i Prilozhen 2 (1968), 1933.Google Scholar
[8]Gelfand, I.M. and Vilenkin, N.Y., Les distributions (t.4, Dunod, Paris, 1967).Google Scholar
[9]Goldin, G., Menikoff, R. and Sharp, D., ‘Diffeomorphism groups, gauge groups, and quantum theory’, Phys. Rev. Lett. 51 (1983), 22462249.Google Scholar
[10]Golubitsky, M. and Guillemin, V., Stable mappings and their singularities (Springer-Verlag, Berlin, Heidelberg, New York, 1973).Google Scholar
[11]Guichardet, A., Symmetric Hilbert spaces and related topics: Lect. Notes in Math. 261 (Springer-Verlag, Berlin, Heidelberg, New York, 1972).Google Scholar
[12]Marion, J., ‘Sur les représentations d'ordre k des groupes (X, G)’, Preprint Univ. Aix-Marseille II (1977).Google Scholar
[13]Marion, J., ‘G-distributions et G-intégrales multiplicatives sur une variété’, Ann. Polon. Math 43 (1983), 7992.CrossRefGoogle Scholar
[14]Marion, J., ‘Generalized energy representations for current groups’, J. Funct. Anal. 54 (1983), 117.CrossRefGoogle Scholar
[15]Marion, J., ‘A survey on the unitary representation of gauge groups and some remaining open questions’, in Bielefeld Encount. Phys. Math. IV, pp. 309329 (World Sci. Publ., Singapore, 1985).Google Scholar
[16]Marion, J., Introduction aux groupes de Lie fonctionnels et à leurs représentations 10 (Publ. I.R.M.A., Abidjan Univ., 1989).Google Scholar
[17]Marion, J. and Testard, D., ‘Energy representations of gauge groups associated with Riemannian flags’, J. Funct. Anal. 76 (1988), 160175.Google Scholar
[18]Palais, R., Seminar on the Atiyah-Singer index theorem: Ann. of Math. Studies 57 (Princeton Univ. Press, 1965).Google Scholar
[19]Parthasarathy, K.R. and Schmidt, K., ‘A new method for constructing factorizable representations of current groups and algebras’, Comm. Math. Phys. 50 (1976), 161175.CrossRefGoogle Scholar
[20]Streater, R., ‘Current commutation relations, continuous tensor products and infinitely divisible group representations’, Rend. Sci. Int. Fisica E. Fermi (1969), 247263.Google Scholar
[21]Vershik, A.M., Gelfand, I.M. and Graev, M.I., ‘Representations of the group SL(2, R) where R is a ring of functions’, Russian Math. Surveys 28 (1973), 87132.CrossRefGoogle Scholar
[22]Vershik, A.M., Gelfand, I.M. and Graev, M.I., ‘Irreducible representations of the group G x and cohomologies’, Funkt. Anal. 8 (1974), 6769.Google Scholar
[23]Vershik, A.M., Gelfand, I.M. and Graev, M.I., ‘Representations of the group of smooth mappings on a manifold into compact Lie groups’, Comp. Math. 35 (1977), 299334.Google Scholar
[24]Vershik, A.M., Gelfand, I.M. and Graev, M.I., ‘Representations of the group of functions taking values in a compact Lie group’, Comp. Math. 42 (1981), 217243.Google Scholar