Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T17:10:43.605Z Has data issue: false hasContentIssue false

A covering property of finite groups

Published online by Cambridge University Press:  17 April 2009

Rolf Brandl
Affiliation:
Mathematisches Institut, Am Hubland, D–8700 Würzburg, Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Finite groups G possessing a proper subgroup U such that for each element g of G there exists an automorphism of G mapping g into U are considered. The question of how the structure of U determines the structure of G is examined. For example, if G is soluble and U is nilpotent then G is nilpotent.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1981

References

[1]Gorenstein, Daniel, Finite groups (Harper and Row, New York, Evanston, and London, 1968).Google Scholar
[2]Hauptmann, Wolfgang, “Gruppen mit einer Automorphismengruppe die transitiv auf den Untergruppen von Primzahlordnung operiert”, Mitt. Math. Sem. Giessen 101 (1973).Google Scholar
[3]Huppert, B., Endliche Gruppen I (Die Grundlehren der mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar
[4]Neumann, Hanna, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 37. Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar
[5]Shult, Ernest E., “On finite automorphic algebras”, Illinois J. Math. 13 (1969), 625653.Google Scholar