No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
It is known that, for an arbitrary convergence space X, the vector space generated by X is dense in LcCc (X) where both C(X) and its dual space carry the continuous convergence structure. In this note, a natural analogue formulated for the operator space L(Cc(X), Cc(X)) is considered, namely: is the vector space generated by the composition operators associated to the continuous mappings in C(X, X) dense in Lc (Cc (X), Cc (X)) ? This question is answered in the negative by a counterexample.