Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T08:31:00.391Z Has data issue: false hasContentIssue false

COPRIME COMMUTATORS IN THE SUZUKI GROUPS $^{\textbf{2}}{\boldsymbol{B}}_{\textbf{2}}\boldsymbol{(q)}$

Published online by Cambridge University Press:  20 January 2021

GIOVANNI ZINI*
Affiliation:
Dipartimento di Matematica e Fisica, Università degli Studi della Campania ‘Luigi Vanvitelli’, viale Lincoln 5, 81100Caserta, Italy

Abstract

In this note we show that every element of a simple Suzuki group $^2B_2(q)$ is a commutator of elements of coprime orders.

MSC classification

Type
Research Article
Copyright
© 2021 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA – INdAM), and by the project ‘Attrazione e Mobilità dei Ricercatori’ Italian PON Programme (PON-AIM 2018 num. AIM1878214-2).

References

Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24 (1997), 235265.CrossRefGoogle Scholar
Huppert, B. and Blackburn, N., Finite Groups III (Springer-Verlag, Berlin, 1982).CrossRefGoogle Scholar
Liebeck, M. W., O'Brien, E. A., Shalev, A. and Tiep, P. H., ‘The Ore conjecture’, J. Eur. Math. Soc. (JEMS) 12(4) (2010), 9391008.CrossRefGoogle Scholar
Ore, O., ‘Some remarks on commutators’, Proc. Amer. Math. Soc. 2 (1951), 307314.CrossRefGoogle Scholar
Pellegrini, M. A. and Shumyatsky, P., ‘Coprime commutators in $\mathrm{PSL}\left(2,q\right)$ ’, Arch. Math. 99 (2012), 501507.CrossRefGoogle Scholar
Shumyatsky, P., ‘Commutators of elements of coprime orders in finite groups’, Forum Math. 27(1) (2015), 575583.10.1515/forum-2012-0127CrossRefGoogle Scholar
Suzuki, M., ‘On a class of doubly transitive groups’, Ann. of Math. 75(2) (1962), 105145.10.2307/1970423CrossRefGoogle Scholar
Tits, J., ‘Ovoïdes et groupes de Suzuki’, Arch. Math. 13 (1962), 187198.10.1007/BF01650065CrossRefGoogle Scholar
Wilson, R. A., The Finite Simple Groups, Graduate Texts in Mathematics, 251 (Springer, London, 2009).10.1007/978-1-84800-988-2CrossRefGoogle Scholar