Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T00:38:49.521Z Has data issue: false hasContentIssue false

Convex sets with lattice point constraints

Published online by Cambridge University Press:  17 April 2009

Poh Wah Awyong
Affiliation:
School of Science/Division of MathematicsNanyang Technological UniversityNational Institute of Education469 Bukit Timah RoadSingapore 259756 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. theses
Copyright
Copyright © Australian Mathematical Society 1997

References

[1]Awyong, P.W. and Scott, P.R., ‘On the maximal circumradius of a planar convex set containing one lattice point’, Bull. Austral. Math. Soc. 52 (1995), 137151.CrossRefGoogle Scholar
[2]Awyong, P.W. and Scott, P.R., ‘Width-diameter relations for planar convex sets with lattice point constraints’, Bull. Austral. Math. Soc. 53 (1996), 469478.CrossRefGoogle Scholar
[3]Awyong, P.W. and Scott, P.R., ‘New inequalities of planar convex sets with lattice point constraints’, Bull. Austral. Math. Soc. 54 (1996), 391396.CrossRefGoogle Scholar
[4]Minkowski, H., Geometrie der Zahlen (Teubner, Leipzig, 1911).Google Scholar
[5]Scott, P.R., ‘Two inequalities for convex sets with lattice point constraints in the plane’, Bull. London. Math. Soc. 11 (1979), 273278.CrossRefGoogle Scholar
[6]Scott, P.R., ‘Further inequalities for convex sets with lattice point constraints in the plane’, Bull. Austral. Math. Soc. 21 (1980), 712.CrossRefGoogle Scholar
[7]Scott, P.R., ‘Two problems in the plane’, Amer. Math. Monthly 89 (1982), 460461.CrossRefGoogle Scholar