Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T10:05:16.053Z Has data issue: false hasContentIssue false

Continuous convergence and the Hahn-Banach problem

Published online by Cambridge University Press:  17 April 2009

Ronald Beattie
Affiliation:
Lehrstuhl für Mathematik 1, Universität Mannheim, Mannheim, Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note, a positive solution is given to the Hahn-Banach problem for an important class of convergence vector spaces. As well, a topological vector space characterization is obtained for fully complete and Br-complete spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1977

References

[1]Binz, Ernst, Continuous convergence on C(X) (Lecture Notes in Mathematics, 469. Springer-Verlag, Berlin, Heidelberg, New York, 1975).CrossRefGoogle Scholar
[2]Binz, Ernst, Butzmann, Heinz-Peter und Kutzler, Kurt, “Über den c-Dual eines topologischen Vektorraumesx”, Math. Z. 127 (1972), 7074.CrossRefGoogle Scholar
[3]Butzmann, H.-P., “Über die c-Reflexivität von Cc(X)”, Comment. Math. Helv. 47 (1972), 92101.Google Scholar
[4]Cook, C.H. and Fischer, H.R., “On equicontinuity and continuous convergence”, Math. Ann. 159 (1965), 94104.Google Scholar
[5]Horváth, John, “Locally convex spaces”, Summer School on Topologieal Vector Spaces, 4183 (Lecture Notes in Mathematics, 331. Springer-Verlag, Berlin, Heidelberg, New York, 1973).CrossRefGoogle Scholar
[6]Kutzler, Kurt, “Eine Bemerkung über endlichdimensionale, separierte, limitierte Vektorräume”, Arch. Math. (Basel) 20 (1969), 165168.Google Scholar
[7]McDermott, Terrence S., “The Hahn-Banach theorem in convergence vector spaces – a brief survey”, Proceedings of the Special Session on Convergence Structures, 148154 (Department of Mathematics, University of Nevada, Reno, 1976).Google Scholar
[8]Müller, Bernd, “Locally precompact convergence vector spaces”, Proceedings of the Special Session on Convergence Structures, 155172 (Department of Mathematics, University of Nevada, Reno, 1976).Google Scholar
[9]Robertson, A.P. and Robertson, Wendy, Topoloffical vector spaces, First edition, reprinted (Cambridge Tracts in Mathematics and Mathematical Physics, 53. Cambridge University Press, Cambridge, 1966).Google Scholar