Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T21:43:59.662Z Has data issue: false hasContentIssue false

CONTINUITY OF THE VARIATIONAL EIGENVALUES OF THE p-LAPLACIAN WITH RESPECT TO p

Published online by Cambridge University Press:  15 March 2011

ENEA PARINI*
Affiliation:
Mathematisches Institut, Universität zu Köln, Weyertal 86-90, D-50931 Köln, Germany (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note it is shown that a result of Champion and De Pascale [‘Asymptotic behavior of nonlinear eigenvalue problems involving p-Laplacian type operators’, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 1179–1195] implies that the variational eigenvalues of the p-Laplacian are continuous with respect to p.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

References

[1]Anane, A. and Tsouli, N., ‘On the second eigenvalue of the p-Laplacian’, in: Nonlinear Partial Differential Equations (Fés, 1994), Pitman Research Notes in Mathematics Series 343 (1996), pp. 1–9.Google Scholar
[2]Champion, T. and De Pascale, L., ‘Asymptotic behavior of nonlinear eigenvalue problems involving p-Laplacian type operators’, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 11791195.CrossRefGoogle Scholar
[3]Garcia Azorero, J. P. and Peral, I., ‘Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues’, Comm. Partial Differential Equations 12 (1987), 13891430.Google Scholar
[4]Huang, Y. X., ‘On the eigenvalues of the p-Laplacian with varying p’, Proc. Amer. Math. Soc. 125 (1997), 33473354.CrossRefGoogle Scholar
[5]Juutinen, P. and Lindqvist, P., ‘On the higher eigenvalues for the -eigenvalue problem’, Calc. Var. Partial Differential Equations 23 (2005), 169192.CrossRefGoogle Scholar
[6]Juutinen, P., Lindqvist, P. and Manfredi, J. J., ‘The -eigenvalue problem’, Arch. Ration. Mech. Anal. 148 (1999), 89105.Google Scholar
[7]Kawohl, B. and Fridman, V., ‘Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant’, Comment. Math. Univ. Carolin. 44 (2003), 659667.Google Scholar
[8], A. and Schmitt, K., ‘Variational eigenvalues of degenerate eigenvalue problems for the weighted p-Laplacian’, Adv. Nonlinear Stud. 5 (2005), 573585.CrossRefGoogle Scholar
[9]Parini, E., ‘The second eigenvalue of the p-Laplacian as p goes to 1’, Int. J. Differ. Equ. (2010), Article ID 984671.Google Scholar