Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T18:12:34.582Z Has data issue: false hasContentIssue false

CONTACT METRIC (κ,μ)-SPACES AS BI-LEGENDRIAN MANIFOLDS

Published online by Cambridge University Press:  01 June 2008

BENIAMINO CAPPELLETTI MONTANO*
Affiliation:
Department of Mathematics, University of Bari, Via E. Orabona, 4, I-70125 Bari, Italy (email: [email protected])
LUIGIA DI TERLIZZI
Affiliation:
Department of Mathematics, University of Bari, Via E. Orabona, 4, I-70125 Bari, Italy (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe a contact metric manifold whose Reeb vector field belongs to the (κ,μ)-nullity distribution as a bi-Legendrian manifold and we study its canonical bi-Legendrian structure. Then we characterize contact metric (κ,μ)-spaces in terms of a canonical connection which can be naturally defined on them.

Type
Research Article
Copyright
Copyright © 2008 Australian Mathematical Society

References

[1]Blair, D. E., ‘Two remarks on contact metric structures’, Tôhoku Math. J. 28 (1976), 373379.CrossRefGoogle Scholar
[2]Blair, D. E., Kouforgiorgos, T. and Papantoniou, B. J., ‘Contact metric manifolds satisfying a nullity condition’, Israel J. Math. 91 (1995), 189214.CrossRefGoogle Scholar
[3]Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds (Birkhäuser, Basel, 2002).CrossRefGoogle Scholar
[4]Boeckx, E., ‘A class of locally φ-symmetric contact metric spaces’, Arch. Math. 72 (1999), 466472.CrossRefGoogle Scholar
[5]Boeckx, E., ‘A full classification of contact metric (κ,μ)-spaces’, Illinois J. Math. 44 (2000), 212219.CrossRefGoogle Scholar
[6]Boeckx, E. and Cho, J. T., ‘η-parallel contact metric spaces’, Differential Geom. Appl. 22 (2005), 275285.CrossRefGoogle Scholar
[7]Cappelletti Montano, B., ‘Bi-Legendrian connections’, Ann. Polon. Math. 86 (2005), 7995.CrossRefGoogle Scholar
[8]Cappelletti Montano, B., ‘Characteristic classes and Ehresmann connections for Legendrian foliations’, Publ. Math. Debrecen 70 (2007), 395425.CrossRefGoogle Scholar
[9]Cappelletti Montano, B., ‘Some remarks on the generalized Tanaka–Webster connection of a contact metric manifold’, Rocky Mountain J. Math., to appear.Google Scholar
[10]Cappelletti Montano, B. and Di Terlizzi, L., ‘𝒟-homothetic transformations for a generalization of contact metric manifolds’, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 277289.CrossRefGoogle Scholar
[11]Cho, J. T., ‘A new class of contact Riemannian manifolds’, Israel J. Math. 109 (1999), 299318.CrossRefGoogle Scholar
[12]Jayne, N., ‘A note on the sectional curvature of Legendre foliations’, Yokohama Math. J. 41 (1994), 153161.Google Scholar
[13]Jayne, N., ‘Contact metric structures and Legendre foliations’, New Zealand J. Math. 27(1) (1998), 4965.Google Scholar
[14]Kouforgiorgos, T. and Tsichlias, C., ‘On the existence of a new class of contact metric manifolds’, Canad. Math. Bull. 43 (2000), 440447.CrossRefGoogle Scholar
[15]Libermann, P., ‘Legendre foliations on contact manifolds’, Differential Geom. Appl. 1 (1991), 5776.CrossRefGoogle Scholar
[16]Pang, M. Y., ‘The structure of Legendre foliations’, Trans. Amer. Math. Soc. 320(2) (1990), 417453.CrossRefGoogle Scholar
[17]Tanaka, N., ‘On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections’, Japan J. Math. 20 (1976), 131190.CrossRefGoogle Scholar
[18]Tanno, S., ‘The topology of contact Riemannian manifolds’, Illinois J. Math. 12 (1968), 700717.CrossRefGoogle Scholar
[19]Tanno, S., ‘Ricci curvatures of contact Riemannian manifolds’, Tôhoku Math. J. 40 (1988), 441448.CrossRefGoogle Scholar
[20]Tanno, S., ‘Variational problems on contact Riemannian manifolds’, Trans. Amer. Math. Soc. 314(1) (1989), 349379.CrossRefGoogle Scholar
[21]Tripathi, M. M., Sasahara, T. and Kim, J.-S., ‘On invariant submanifolds of contact metric manifolds’, Tsukuba J. Math. 29 (2005), 495510.Google Scholar
[22]Webster, S. M., ‘Pseudo-Hermitian structures on a real hypersurface’, J. Differential Geom. 13 (1978), 2541.CrossRefGoogle Scholar