Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T02:21:25.211Z Has data issue: false hasContentIssue false

Contact and quasiconformal mappings on real model filiform groups

Published online by Cambridge University Press:  17 April 2009

Ben Warhurst
Affiliation:
School of Mathematics, University of New South Wales, Sydney NSW 2052, Australia, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that Carnot groups with real model filiform Lie algebras are not rigid. Consequently non-trivial smooth contact and quasiconformal mappings exist in abundance.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Chow, W.L., ‘Uuml;ber Systeme von linearen partiellen Differentialgleichungen erster Ordnung’, Math. Ann. 177 (1939), 98105.Google Scholar
[2]Cowling, M., De Mari, F., Korányi, A. and Reimann, H.M., ‘Contact and conformal maps on Iwasawa N groups’, Rend. Mat. Acc. Lincei s. 9, v. 13 (2002) (to appear).Google Scholar
[3]Kobayashi, S. and Nomizu, K., Foundations of differential geometry, Vol 1 (John Wiley and Son, New York, 1963).Google Scholar
[4]Korányi, A. and Reimann, H.M., ‘Quasiconformal mappings on the Heisenberg group’, Invent. Math. 80 (1985), 309338.CrossRefGoogle Scholar
[5]Korányi, A. and Reimann, H.M., ‘Foundations for the theory of quasiconformal mappings on the Heisenberg group’, Adv. In Math. 111 (1995), 187.CrossRefGoogle Scholar
[6]Mostow, G.D., Strong rigidity of locally symmetric spaces (Princeton University Press, Princeton, NJ, 1973).Google Scholar
[7]Pansu, P., ‘Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un’, Ann. Math. 129 (1989), 160.CrossRefGoogle Scholar
[8]Reimann, H.M., ‘Ordinary differential equations and quasiconformal mappings’, Invent. Math. 33 (1976), 247270.CrossRefGoogle Scholar
[9]Reimann, H.M., ‘Rigidity of H-type groups’, Math. Z. 237 (2001), 697725.CrossRefGoogle Scholar
[10]Reimann, H.M. and Ricci, F., ‘The complexified Heisenberg group’, in Proceedings on Analysis and Geometry (Russian) (Novosibirsk, Akademgorodok, 1999), pp. 465480.Google Scholar
[11]Varadarajan, V.S., Lie groups, Lie algebras, and their representations (Springer–Verlag, Berlin, Heidelberg, New York 1984).CrossRefGoogle Scholar