Article contents
CONSTRUCTING PERMUTATION POLYNOMIALS OVER FINITE FIELDS
Published online by Cambridge University Press: 07 August 2013
Abstract
In this paper, we construct several new permutation polynomials over finite fields. First, using the linearised polynomials, we construct the permutation polynomial of the form ${ \mathop{\sum }\nolimits}_{i= 1}^{k} ({L}_{i} (x)+ {\gamma }_{i} ){h}_{i} (B(x))$ over
${\mathbf{F} }_{{q}^{m} } $, where
${L}_{i} (x)$ and
$B(x)$ are linearised polynomials. This extends a theorem of Coulter, Henderson and Matthews. Consequently, we generalise a result of Marcos by constructing permutation polynomials of the forms
$xh({\lambda }_{j} (x))$ and
$xh({\mu }_{j} (x))$, where
${\lambda }_{j} (x)$ is the
$j$th elementary symmetric polynomial of
$x, {x}^{q} , \ldots , {x}^{{q}^{m- 1} } $ and
${\mu }_{j} (x)= {\mathrm{Tr} }_{{\mathbf{F} }_{{q}^{m} } / {\mathbf{F} }_{q} } ({x}^{j} )$. This answers an open problem raised by Zieve in 2010. Finally, by using the linear translator, we construct the permutation polynomial of the form
${L}_{1} (x)+ {L}_{2} (\gamma )h(f(x))$ over
${\mathbf{F} }_{{q}^{m} } $, which extends a result of Kyureghyan.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright ©2013 Australian Mathematical Publishing Association Inc.
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:88307:20160414053131999-0413:S0004972713000646_inline13.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:90935:20160414053131999-0413:S0004972713000646_inline14.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:73914:20160414053131999-0413:S0004972713000646_inline15.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:70761:20160414053131999-0413:S0004972713000646_inline16.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:24496:20160414053131999-0413:S0004972713000646_inline17.gif?pub-status=live)
- 7
- Cited by