Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T19:19:16.764Z Has data issue: false hasContentIssue false

Constante rectangle et biais d'un espace de Banach

Published online by Cambridge University Press:  17 April 2009

Jocelyn Desbiens
Affiliation:
Département d'informatique, Collège Militaire Royal de Saint-Jean, Saint-Jean-sur-Richelieu, Québec, Canada, JOJ 1R0
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study in this paper the relations existing between Joly's rectangular constant (µ) and the degree of asymmetry of Birkhoff-James's orthogonality relation (β). New bounds on the variation of µ in terms of β and estimation of the values taken by β in the case of uniformly convex Banach spaces are given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Al-Rashed, A.M., ‘Norm inequalities and characterizations of inner product spaces’, Amer. Math. Soc. (submitted).Google Scholar
[2]Baronti, M., ‘Su alcuni parametri degli spazi normati’, Boll. Un. Mat. Ital. B (5) 18 (1981), 10651085.Google Scholar
[3]Birkhoff, G., ‘Orthogonality in linear metric spaces’, Duke Math. J. 1 (1935), 169172.CrossRefGoogle Scholar
[4]Clarkson, J.A., ‘Uniformly convex spaces’, Trans. Amer. Math. Soc. 40 (1936), 396414.CrossRefGoogle Scholar
[5]DeFigueiredo, D.G. and Karlovitz, L.A., ‘On the radial projection in normed spaces’, Bull. Amer. Math. Soc. 73 (1967), 364368.CrossRefGoogle Scholar
[6]Rio, M. Del and Benitez, C., ‘The rectangular constant for two-dimensional spaces’, J. Approx. Theory 19 (1977), 1521.Google Scholar
[7]Desbiens, J., ‘Sur le biais d'un espace de Banach’, Ann. Sci. Math. Québec (to appear).Google Scholar
[8]Dunkl, C.F. and Williams, K.S., ‘A simple norm inequality’, Amer. Math. Monthly 71 (1964), 5354.CrossRefGoogle Scholar
[9]Fortet, R., ‘Remarques sur les espaces uniformément convexes’, Bull. Soc. Math. France 67–69 (19391941), 2346.Google Scholar
[10]Franchetti, C., ‘On the radial constant of real normed spaces’, in Approximation Theory III, pp. 425428 (Academic Press, New York, 1980).Google Scholar
[11]Gastinel, N. and Joly, J.L., ‘Condition numbers and general projection method’, Linear Algebra Appl. 3 (1970), 185224.CrossRefGoogle Scholar
[12]Hanner, O., ‘On the uniform convexity of Lp and lp’, Ark. Mat 3 (1955), 239244.CrossRefGoogle Scholar
[13]James, R.C., ‘Orthogonality and linear functionale in normed linear spaces’, Trans. Amer. Math. Soc. 61 (1947), 265292.CrossRefGoogle Scholar
[14]James, R.C., ‘Uniformly non-square banach spaces’, Ann. of Math. 80 (1964), 542550.CrossRefGoogle Scholar
[15]Joly, J.L., ‘Caractérisation d'espace hilbertien au moyen de la constante rectangle’, J. Approx. Theory 2 (1969), 301311.CrossRefGoogle Scholar
[16]Kapoor, O.P. and Mathur, S.B., ‘Metric Projection Bound and the Lipschitz Constant of the Radial Retraction’, J. Approx. Theory 38 (1983), 6670.CrossRefGoogle Scholar
[17]Massera, J.L. and Schäffer, J.J., ‘Linear differential equations and functional analysis’, Ann. of Math. 67 (1958), p. 538.CrossRefGoogle Scholar
[18]Meir, A., ‘On the uniform convexity of Lp spaces, 1 < p ≤ 2’, Illinois J. Math. 25 (1984), 420424.Google Scholar
[19]Morales, C., ‘Pseudo-contractive mappings and the Leray-Schauder boundary conditions’, Comment. Math. Univ. Carolin. 20 (1979), 745756.Google Scholar
[20]Nordlander, G., ‘The modulus of convexity in normed linear spaces’, Ark. Mat. 4 (1958), 1517.CrossRefGoogle Scholar
[21]Smith, M.A., ‘On the Norms of Metric Projections’, J. Approx. Theory 31 (1981), 224229.CrossRefGoogle Scholar
[22]Thele, R.L., ‘Some results on the radial projection in Banach spaces’, Proc. Amer. Math. Soc. 42 (1974), 483486.CrossRefGoogle Scholar