Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T07:50:43.850Z Has data issue: false hasContentIssue false

Conjugacy classes of involutions in Coxeter groups

Published online by Cambridge University Press:  17 April 2009

R.W. Richardson
Affiliation:
Department of Mathematics, Institute of Advanced Studies, Australian National University, PO Box 4, Canberra, ACT 2600, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we give an elementary method for classifying conjugacy classes of involutions in a Coxeter group (W, S). The classification is in terms of (W-equivalence classes of certain subsets of S).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1982

References

[1]Bala, P. and Carter, R.W., “Classes of unipotent elements in simple algebraic groups. II”, Math. Proc. Cambridge Philos. Soc. 80 (1976), 118.CrossRefGoogle Scholar
[2]Bourbaki, N., Éléements de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines (Actualités Scientifiques et Industrielles, 1337. Hermann, Paris, 1968).Google Scholar
[3]Carter, R.W., “Conjugacy classes in the Weyl group”, Compositio Math. 25 (1972), 159.Google Scholar
[4]Deodhar, Vinay V., “On the root system of a Coxeter group”, Comm. Algebra 10 (1982), 611630.CrossRefGoogle Scholar
[5]Howlett, Robert B., “Normalizers of parabolic subgroups of reflection groups”, J. London Math. Soc. (2) 21 (1980), 6280.CrossRefGoogle Scholar
[6]Steinberg, Robert, Endomorphisms of linear algebraic groups (Memoirs of the American Mathematical Society, 80. American Mathematical Society, Providence, Rhode Island, 1980).Google Scholar