Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T18:35:44.408Z Has data issue: false hasContentIssue false

CONGRUENCES FOR RANKS OF PARTITIONS

Published online by Cambridge University Press:  29 January 2024

RENRONG MAO*
Affiliation:
Department of Mathematics, Soochow University, Suzhou 215006, PR China
Rights & Permissions [Opens in a new window]

Abstract

Ranks of partitions play an important role in the theory of partitions. They provide combinatorial interpretations for Ramanujan’s famous congruences for partition functions. We establish a family of congruences modulo powers of $5$ for ranks of partitions.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

A partition of a positive integer n is a sequence of nonincreasing positive integers whose sum equals n. Let $p(n)$ denote the number of partitions of n. Ramanujan found and proved the three famous congruences:

(1.1) $$ \begin{align} p(5n+4)&\equiv 0\pmod 5, \end{align} $$
(1.2) $$ \begin{align} p(7n+5)&\equiv 0\pmod 7, \end{align} $$

Dyson [Reference Dyson9] defined the rank of a partition to be the largest part minus the number of parts and conjectured that ranks of partitions provided combinatorial interpretations to Ramanujan’s congruences (1.1) and (1.2). Atkin and Swinnerton-Dyer [Reference Atkin and Swinnerton-Dyer3] proved these conjectures. Namely,

(1.3) $$ \begin{align} N(m,5,5n+4)&=\frac{p(5n+4)}{5}, \quad0\leq m\leq 4, \end{align} $$

where $N(m,k,n)$ denotes the number of partitions of n with rank congruent to m modulo k. They also obtained the generating functions for every rank difference $N(b,\ell ,\ell n+d)-N(c,\ell ,\ell n+d)$ with $\ell =5, 7$ and $0\leq b,c,d\leq \ell $ .

Inspired by the works of Atkin and Swinnerton-Dyer, many authors studied properties of ranks of partitions. For equalities between $N(t,k,n)$ and $N(s,k,n)$ , see [Reference Andrews, Berndt, Chan, Kim and Malik1, Reference Fan, Xia and Zhao10, Reference Lewis12, Reference Santa-Gadea17]. For example, Andrews et. al. [Reference Andrews, Berndt, Chan, Kim and Malik1] found that

$$ \begin{align*} \begin{aligned} N(0,4; 2 n)-N(2,4; 2 n) & = (-1)^n(N(0,8; 2 n)-N(4,8; 2 n)), \\ N(0,4; 2 n+1)-N(2,4; 2 n+1) & = (-1)^n(N(0,8; 2 n+1)+N(1,8; 2 n+1) \\ &\quad -2 N(3,8; 2 n+1)-N(4,8; 2 n+1)). \end{aligned} \end{align*} $$

In [Reference Andrews and Lewis2], Andrews and Lewis made conjectures on inequalities between ranks of partitions modulo $3$ . Bringmann [Reference Bringmann4] first proved these conjectures: for $n \geq 0$ ,

(1.4) $$ \begin{align} N(0,3,3 n) & < N(1,3,3 n) \quad(n \neq 1,3,7), \\N(0,3,3 n+1) &> N(1,3,3 n+1),\nonumber \\N(0,3,3 n+2) &< N(1,3,3 n+2) .\nonumber \end{align} $$

When $n=1,3,7$ , we have equality in (1.4). Bringmann’s proof relies on the circle method to obtain asymptotic results on ranks of partitions modulo $3$ . For more studies on the asymptotic behaviour of ranks of partitions, see [Reference Bringmann and Kane5, Reference Bringmann and Mahlburg6]. Later, Chan and the author provided refinements of these inequalities by using elementary q-series manipulation (see [Reference Chan and Mao7, Corollary 1.7]).

More recently, Chen et al. [Reference Chen, Chen and Garvan8] studied congruences for ranks of partitions. Let

$$ \begin{align*} a_f(n):=N(0,2,n)-N(1,2,n).\end{align*} $$

They proved that, for all $\alpha \geq 3$ and all $n \geq 0$ ,

$$ \begin{align*} a_f(5^\alpha n+\delta_\alpha)+a_f(5^{\alpha-2} n+\delta_{\alpha-2}) \equiv 0\ (\bmod\ 5^{\lfloor \alpha/2 \rfloor}), \end{align*} $$

where $\delta _\alpha $ satisfies $0<\delta _\alpha <5^\alpha $ and $24 \delta _\alpha \equiv 1\ (\bmod\ 5^\alpha )$ . In this paper, we establish the following congruences.

Theorem 1.1. For integers $\alpha \geq 0$ , let

$$ \begin{align*} \lambda_{ \alpha} := \left\{\!\! \begin{array}{ll} \dfrac{23\cdot 5^{\alpha}-19}{24}&\textrm{ if } \alpha \text{ is odd,} \\[8pt] \dfrac{19\cdot(5^{\alpha}-1)}{24}&\textrm{ if } \alpha \text{ is even.} \end{array} \right.\!\! \end{align*} $$

Then,

$$ \begin{align*} N(1,10,5^{\alpha+1}n+5\lambda_\alpha+4)\equiv N(5,10,5^{\alpha+1}n+5\lambda_\alpha+4)\pmod{5^{\lfloor{(\alpha+1)}/{2}\rfloor }}. \end{align*} $$

Remark 1.2. From the proof of Proposition 3.1,

(1.5) $$ \begin{align} N(0,10,5n+4)-N(4,10,5n+4) =N(1,10,5n+4)-N(5,10,5n+4). \end{align} $$

Thus,

$$ \begin{align*} N(0,10,5^{\alpha+1}n+5\lambda_\alpha+4)\equiv N(4,10,5^{\alpha+1}n+5\lambda_\alpha+4)\pmod{5^{\lfloor{(\alpha+1)}/{2}\rfloor }}. \end{align*} $$

We prove Theorem 1.1 by arguments similar to those in [Reference Mao and Zhou14, Reference Paule and Radu16, Reference Wang and Yang18]. We first establish some identities between modular functions on $\Gamma _0(10)$ in Section 2. Then we prove Theorem 1.1 in Section 3.

2 Preliminaries

Recall the Dedekind eta-function given by

$$ \begin{align*} \eta(\tau):=q^{{1}/{24}}(q)_\infty. \end{align*} $$

In the above equation and for the rest of this article, we use the notation

$$ \begin{align*} (x)_{\infty}&:=(x; q)_{\infty}:=\prod_{k=0}^{\infty}(1-x q^{k}) , \end{align*} $$

where $q=e^{2\pi i\tau }$ with $\text {Im}(\tau )>0$ . We also need

$$ \begin{align*} \rho&:= \rho(\tau):=\frac{\eta^2(2 \tau) \eta^4(5 \tau)}{\eta^4(\tau) \eta^2(10 \tau)},\\ t&:= t(\tau):=\frac{\eta^2(5 \tau) \eta^2(10 \tau)}{\eta^2(\tau) \eta^2(2 \tau)} ,\\ M&:=M(\tau):=\frac{\eta^2(2\tau)}{\eta^2(50\tau)},\\ K&:=K(\tau)=\frac{\eta(25\tau)}{\eta(\tau)}. \end{align*} $$

By the criteria for the modularity of eta-products [Reference Newman15, Theorem 4.7], $\rho , t$ are modular functions on $\Gamma _0(10)$ and $M, K$ are on $\Gamma _0(50)$ and $\Gamma _0(25)$ , respectively.

For $g(\tau ):=\sum _{n=-\infty }^{\infty } a_{g}(n) q^{n}$ , the operator $U_{k}$ is defined by

$$ \begin{align*} U_{ k}(g)(\tau):=\frac{1}{k}\sum_{\lambda=0}^{k-1}g\bigg(\frac{\tau+\lambda}{k}\bigg). \end{align*} $$

One can easily verify that

$$ \begin{align*} U_{k}(f(q^k)g)(\tau)&=f(q) \sum_{n=-\infty}^{\infty} a_{g}(k n) q^{n}. \end{align*} $$

We need the following fundamental lemma.

Lemma 2.1 (See [Reference Wang and Yang18, Lemma 2.3]).

Let

$$ \begin{align*} & a_0(t)=-t, \\ & a_1(t)=-t(2 \cdot 5+5^2 t), \\& a_2(t)=-t(11 \cdot 5+2 \cdot 5^3 t+5^4 t^2), \\ & a_3(t)=-t(28 \cdot 5+11 \cdot 5^3 t+2 \cdot 5^5 t^2+5^6 t^3), \\ & a_4(t)=-t(7 \cdot 5^2+28 \cdot 5^3 t+11 \cdot 5^5 t^2+2 \cdot 5^7 t^3+5^8 t^4). \end{align*} $$

Then, for $u: \mathbb {H} \rightarrow \mathbb {C}$ and $j \in \mathbb {Z}$ ,

(2.1) $$ \begin{align} U_5(u t^j)=-\sum_{l=0}^4 a_l(t) U_5(u t^{j+l-5}). \end{align} $$

Lemma 2.2. Let $U^{(0,j)}(f):=U_5(K\cdot \rho ^j\cdot f), \ U^{(1,j)}(f):=U_5(M\cdot \rho ^j\cdot f)$ . Then we have four groups of identities.

$$ \begin{align*} & \kern-62pt Group\ I\\U^{(0,0)}(1)&=5\rho t\\ U^{(0,0)}(t^{-1})&=\rho\\ U^{(0,0)}(t^{-2})&=1-4\cdot 5t-5^3t^2+\rho(-4+5^2t)\\ U^{(0,0)}(t^{-3})&=-6+7\cdot5^2t+2\cdot5^4t^2+5^5t^3+\rho(5-4\cdot5^2t)\\ U^{(0,0)}(t^{-4})&=13-18\cdot5^2t-2\cdot5^4t^2+2\cdot5^5t^3+5^7t^4\\&\quad+\rho(2\cdot5^2-5^4t-2\cdot5^5t^2-2\cdot5^6t^3).\\[4pt]& \kern-62pt Group\ II\\U^{(0,1)}(1)&=4t-9\cdot5^2t^2-9\cdot5^4 t^3-31\cdot5^5t^4-7\cdot5^7t^5-5^9t^6\\&\quad+\rho(29\cdot5t+57 \cdot5^3t^2+37\cdot 5^5t^3+63\cdot5^6t^4+11\cdot5^8t^5+5^{10}t^6)\\ U^{(0,1)}( t^{-1})&=-5t+\rho(1+5^2t)\\ U^{(0,1)}( t^{-2})&=-4\cdot5 t-5^3t^2+\rho(1+5^2t)\\ U^{(0,1)}( t^{-3})&=1+18\cdot5t+7\cdot5^3t^2+5^5t^3+\rho(-2\cdot5-3\cdot5^2t-5^4t^2)\\ U^{(0,1)}( t^{-4})&=-2\cdot5+7\cdot5^2t+4\cdot5^4t^2+5^6t^3+5^7t^4 +\rho(9\cdot5-2\cdot5^3t-5^6t^3).\\[4pt]& \kern-62pt Group\ III\\U^{(1,0)}(1)&=-1\\ U^{(1,0)}(t^{-1})&=3\cdot5+4\cdot5^2t+\rho (t^{-1}-5^2)\\ U^{(1,0)}(t^{-2})&=-12\cdot 5- 4\cdot5^3t-5^4t^2+\rho(-4t^{-1}+4\cdot5^2)\\ U^{(1,0)}(t^{-3})&=t^{-1}- 5^5t^2-5^6t^3+\rho(2\cdot5^3+5^5t+5^6t^2)\\ U^{(1,0)}(t^{-4})&=-2\cdot5 t^{-1}+54\cdot5^2+18\cdot5^4t+2\cdot5^6t^2-5^8t^4\\&\quad+\rho(18\cdot5t^{-1}-38\cdot5^3-2\cdot5^6t-2\cdot5^7t^2).\\[4pt]& \kern-62pt Group\ IV\\U^{(1,1)}(1)&=-4-5^2t-5^4t^2+\rho(11\cdot5+5^4t+5^5t^2)\\ U^{(1,1)}( t^{-1})&=2\cdot5+4\cdot5^2t+\rho(t^{-1}-4\cdot5) \\ U^{(1,1)}( t^{-2})&=-5^3t- 5^4t^2+5^3\rho t\\ U^{(1,1)}( t^{-3})&=-33\cdot 5-11\cdot5^3t-5^5t^2-5^6t^3 +\rho(-11t^{-1}+11\cdot5^2+5^5t^2)\\ U^{(1,1)}( t^{-4})&= t^{-1}+33\cdot5^2+11\cdot5^4t-5^5t^2-5^7t^3-5^8t^4\\&\quad+\rho(11\cdot5t^{-1}-9\cdot5^3+5^5t+5^6t^2+5^7t^3).\end{align*} $$

Sketch of proof.

The equations in Groups I–IV are identities between modular functions on $\Gamma _0(10)$ . One can automatically prove them by the MAPLE package ETA [Reference Garvan11]. For example, the Maple commands for verifying the second identity in Group II are provided at https://github.com/dongpanghu/code5.

We call a map $d: \mathbb {Z} \times \mathbb {Z} \longrightarrow \mathbb {Z}$ a discrete array if for each i, the map ${d(i,-): \mathbb {Z} \longrightarrow \mathbb {Z}}$ given by $j \mapsto d(i, j)$ has finite support.

Lemma 2.3. There exist discrete arrays $a_{i,j}, b_{i,j}$ with $0\leq i, j\leq 1$ such that for $k\in \mathbb {Z}$ ,

(2.2) $$ \begin{align} U^{(i,j)}( t^k)= \sum_{n=\lceil{(k-s_{i,j})}/{5}\rceil}^{\infty} a_{i,j}(k, n) t^n+\rho\,\bigg(\sum_{n=\lceil{(k-s_{i,j})}/{5}\rceil}^{\infty} b_{i,j}(k, n) t^n\bigg), \end{align} $$

where

$$ \begin{align*} s_{i,j}=\left\{\!\! \begin{array}{cl} -1 & \text{when}\ (i,j)=(0,0),\\ - 1 & \text{when}\ (i,j)=(0,1),\\ 4 & \text{when}\ (i,j)=(1,0),\\ 4 & \text{when}\ (i,j)=(1,1). \end{array} \right.\!\! \end{align*} $$

Moreover, the values of $a_{i,j}(k, n)$ and $b_{i,j}(k, n)$ for $-4 \leq k\leq 0$ are given in Groups I–IV of Lemma 2.2 and, for other $k, a_{i,j}(k, n), b_{i,j}(k, n)$ , satisfy the recurrence relation in [Reference Wang and Yang18, (2.17)]:

(2.3) $$ \begin{align} m( k, n)&= (7 \cdot 5^2 m( k-1, n-1)+28 \cdot 5^3 m( k-1, n-2)+11 \cdot 5^5 m( k-1, n-3)\nonumber\\ &\quad +2 \cdot 5^7 m( k-1, n-4)+5^8 m( k-1, n-5))+(28 \cdot 5 m( k-2, n-1)\nonumber \\ &\quad +11 \cdot 5^3 m( k-2, n-2)+2 \cdot 5^5 m( k-2, n-3)+5^6 m( k-2, n-4)) \nonumber\\ &\quad +(11 \cdot 5 m( k-3, n-1)+2 \cdot 5^3 m( k-3, n-2)+5^4 m( k-3, n-3)) \nonumber\\ &\quad + (2 \cdot 5 m( k-4, n-1)+5^2 m( k-4, n-2))+m( k-5, n-1). \end{align} $$

Proof. We verify that the result holds for $-4 \leq k\leq 0$ by Groups I–IV in Lemma 2.2. Then we apply (2.1) to prove Lemma 2.3 by induction on k.

Denote the $5$ -adic order of n by $\pi (n)$ and set $\pi (0)=+\infty $ .

Lemma 2.4 [Reference Wang and Yang18, Lemma 2.8].

Let $g(k, n)$ be integers which satisfy the recurrence relation (2.3). Suppose there exists an integer l and a constant $\gamma $ such that, for $l \leq k \leq l+4$ ,

(2.4) $$ \begin{align} \pi(g(k, n)) \geq\bigg\lfloor\frac{5 n-k+\gamma}{3}\bigg\rfloor. \end{align} $$

Then (2.4) holds for any $k \in \mathbb {Z}$ .

Lemma 2.5. Recall that $a_{i, j}, b_{i, j}$ are given in Lemma 2.3. For $n, k\in \mathbb {Z}$ ,

$$ \begin{align*} \pi(a_{0,0}(k, n)) \geq\bigg\lfloor\frac{5 n-k-2}{3}\bigg\rfloor , &\quad \pi(b_{0,0}(k, n)) \geq\bigg\lfloor\frac{5 n-k}{3}\bigg\rfloor , \\ \pi(a_{0,1}(k, n)) \geq\bigg\lfloor\frac{5 n-k-3}{3}\bigg\rfloor , &\quad \pi(b_{0,1}(k, n)) \geq\bigg\lfloor\frac{5 n-k}{3}\bigg\rfloor ,\\ \pi(a_{1,0}(k, n)) \geq\bigg\lfloor\frac{5 n-k+2}{3}\bigg\rfloor , &\quad \pi(b_{1,0}(k, n)) \geq\bigg\lfloor\frac{5 n-k+5}{3}\bigg\rfloor ,\\ \pi(a_{1,1}(k, n)) \geq\bigg\lfloor\frac{5 n-k+2}{3}\bigg\rfloor , &\quad \pi(b_{1,1}(k, n)) \geq\bigg\lfloor\frac{5 n-k+4}{3}\bigg\rfloor. \end{align*} $$

Proof. For $-4\leq k\leq 0$ , the inequalities in Lemma 2.5 can be verified by using Groups I–IV in Lemma 2.2. Then the results follow from Lemma 2.4 immediately.

3 Proof of Theorem 1.1

We first need the following generating function.

Proposition 3.1. We have

(3.1) $$ \begin{align} \sum_{n=0}^{\infty}(N(1,10,5n+4)-N(5,10,5n+4))q^n=\frac{(q^{10}; q^{10})^2_{\infty}} {(q; q)_{\infty}}. \end{align} $$

Proof. We deduce from [Reference Mao13, (1.14)] that

(3.2) $$ \begin{align} &\sum_{n=0}^{\infty}(N(0,10,5n+4)+N(1,10,5n+4) -N(4,10,5n+4) -N(5,10,5n+4))q^n\nonumber\\ &\quad =\frac{2(q^{10}; q^{10})^2_{\infty}} {(q; q)_{\infty}}. \end{align} $$

Note that

$$ \begin{align*} N(0,5,n)&=N(0,10,n) +N(5,10,n) \end{align*} $$

and

$$ \begin{align*} N(1,5,n)&=N(1,10,n) +N(4,10,n), \end{align*} $$

which together with (1.3) give

(3.3) $$ \begin{align} N(0,10,5n+4)-N(4,10,5n+4)= N(1,10,5n+4)-N(5,10,5n+4). \end{align} $$

Equation (3.1) follows immediately from (3.2) and (3.3).

Define

$$ \begin{align*} \sum_{n=0}^\infty e(n)q^n:=\frac{(q^{10}; q^{10})^2_{\infty}} {(q; q)_{\infty}}. \end{align*} $$

Then Proposition 3.1 implies

(3.4) $$ \begin{align} N(1,10,5n+4)-N(5,10,5n+4)=e(n). \end{align} $$

Let $ L_0:=1$ and, for $\alpha \geq 1$ ,

$$ \begin{align*} L_{2\alpha -1}& :=\frac{(q^{5}; q^{5})_{\infty}}{(q^2; q^2)^2_{\infty}}\sum_{n=0}^\infty e(5^{2\alpha -1}n+\lambda_{2\alpha-1})q^{n+1},\\ L_{2 \alpha} & :=\frac{(q; q)_{\infty}}{(q^{10}; q^{10})^2_{\infty}} \sum_{n=0}^{\infty} e(5^{2 \alpha} n+\lambda_{2 \alpha}) q^{n}. \end{align*} $$

Lemma 3.2. For all $\alpha \geq 0$ ,

(3.5) $$ \begin{align} \kern-6pt L_{2 \alpha+1} & = U^{(0,0)}(L_{2 \alpha}), \end{align} $$
(3.6) $$ \begin{align} L_{2 \alpha+2} & = U^{(1,0)}( L_{2 \alpha+1}). \end{align} $$

Proof. For any $\alpha \geq 0$ ,

$$ \begin{align*} U^{(0,0)}(L_{2 \alpha})& =U_5\bigg(\frac{q(q^{25}; q^{25})_{\infty}}{(q; q)_{\infty}}\cdot\frac{(q; q)_{\infty}}{(q^{10}; q^{10})^2_{\infty}} \sum_{n=0}^{\infty} e(5^{2 \alpha} n+\lambda_{2 \alpha}) q^{n}\bigg) \\ & =\frac{(q^{5}; q^{5})_{\infty}}{(q^2; q^2)^2_{\infty}} \cdot U_5\bigg(\sum^\infty_{n =0} e(5^{2 \alpha}n+\lambda_{2 \alpha}) q^{n+1}\bigg) \\ & =\frac{(q^{5}; q^{5})_{\infty}}{(q^2; q^2)^2_{\infty}} \cdot \sum^\infty_{n =0} e(5^{2 \alpha}(5n+4)+\lambda_{2 \alpha}) q^{n+1}\\ & =\frac{(q^{5}; q^{5})_{\infty}}{(q^2; q^2)^2_{\infty}} \cdot \sum^\infty_{n =0} e(5^{2 \alpha+1}n+\lambda_{2 \alpha+1}) q^{n+1} \\ &=L_{2\alpha+1}. \end{align*} $$

Similarly,

$$ \begin{align*} U^{(1,0)}( L_{2 \alpha+1}) & =U_5\bigg(\frac{(q^2; q^2)^2_{\infty}}{q^4(q^{50}; q^{50})^2_{\infty}}\cdot\frac{(q^{5}; q^{5})_{\infty}}{(q^2; q^2)^2_{\infty}}\sum_{n=0}^\infty e(5^{2\alpha +1}n+\lambda_{2\alpha+1})q^{n+1}\bigg) \\ & =\frac{(q; q)_{\infty}}{(q^{10}; q^{10})^2_{\infty}} \cdot U_5\bigg(\sum^\infty_{n =0} e(5^{2 \alpha+1}n+\lambda_{2 \alpha+1}) q^{n-3}\bigg) \\ & =\frac{(q; q)_{\infty}}{(q^{10}; q^{10})^2_{\infty}} \cdot \sum^\infty_{n =0} e(5^{2 \alpha+1}(5n+3)+\lambda_{2 \alpha+1}) q^{n} \\ & =\frac{(q; q)_{\infty}}{(q^{10}; q^{10})^2_{\infty}} \cdot \sum^\infty_{n =0} e(5^{2 \alpha+2}n+\lambda_{2 \alpha+2}) q^{n} \\ &=L_{2\alpha+2}.\\[-35pt] \end{align*} $$

Theorem 3.3. There exists discrete arrays $c, d$ such that for $\alpha \geq 1$ ,

$$ \begin{align*} L_{\alpha}= \sum_{n\geq\delta_\alpha}c(\alpha,n)t^n+\rho\bigg(\sum_{n\geq\delta_\alpha}d(\alpha,n)t^n\bigg), \end{align*} $$

where

$$ \begin{align*} \delta_\alpha=\left\{\!\! \begin{array}{ll} 1&\text{if}\ \alpha \text{ is odd},\\ 0&\text{otherwise}. \end{array} \right. \end{align*} $$

Moreover,

(3.7) $$ \begin{align} \pi(c(\alpha,n))\geq\left\{\!\! \begin{array}{ll} \dfrac{\alpha-1}{2}+\bigg\lfloor\dfrac{5 n-2}{3}\bigg\rfloor &\text{if}\ \alpha \text{ is odd},\\[5pt] \dfrac{\alpha}{2}+\bigg\lfloor\dfrac{5 n+1}{3}\bigg\rfloor & \text{otherwise} \end{array} \right. \end{align} $$

and

(3.8) $$ \begin{align} \pi(d(\alpha,n))\geq\left\{\!\! \begin{array}{ll} \dfrac{\alpha-1}{2}+\bigg\lfloor\dfrac{5 n}{3}\bigg\rfloor & \text{if}\ \alpha \text{ is odd,}\\[5pt] \dfrac{\alpha}{2}+\bigg\lfloor\dfrac{5 n+3}{3}\bigg\rfloor & \text{otherwise.} \end{array} \right.\!\! \end{align} $$

Proof. Let $c(1,k)=0$ for $k\geq 1$ and $d(1,1)=5, d(1,k)=0$ for $k\geq 2$ . For $\alpha \geq 1$ , define

$$ \begin{align*} c(2\alpha,n)&=\sum_{k\geq1}[c(2\alpha-1,k)a_{1,0}(k,n)+d(2\alpha-1,k)a_{1,1}(k,n)],\\ d(2\alpha,n)&=\sum_{k\geq1}[c(2\alpha-1,k)b_{1,0}(k,n)+d(2\alpha-1,k)b_{1,1}(k,n)],\\ c(2\alpha+1,n)&=\sum_{k\geq0}[c(2\alpha,k)a_{0,0}(k,n)+d(2\alpha,k)a_{0,1}(k,n)],\\ d(2\alpha+1,n)&=\sum_{k\geq0}[c(2\alpha,k)b_{0,0}(k,n)+d(2\alpha,k)b_{0,1}(k,n)]. \end{align*} $$

From Lemma 2.2, Group I and (3.5),

$$ \begin{align*} L_1=U^{(0,0)}(L_0)=U^{(0,0)}(1)=\rho\bigg(\sum_{n=1}^1d(1,n)t^n\bigg), \end{align*} $$

which gives $\pi (c(1,n))\geq \lfloor {(5 n-2)}/{3}\rfloor $ and $\pi (d(1,n))\geq \lfloor {5 n}/{3}\rfloor $ . From (3.6),

$$ \begin{align*} L_2&=U^{(1,0)}(L_1)=U_5(M\cdot L_1) \nonumber =\sum_{n=1}^1d(1,n)U_5(M\rho t^n) \nonumber =\sum_{n=1}^1d(1,n)U^{(1,1)}( t^n)\nonumber \\&=\sum_{n=1}^1d(1,n) \bigg(\sum_{k\geq\lceil{(n-4)}/{5}\rceil}a_{1,1}(n,k)t^k+\rho\bigg(\sum_{k\geq\lceil{(n-4)}/{5}\rceil} b_{1,1}(n,k)t^k\bigg)\bigg)\qquad\qquad\textrm{(by (2.2))} \\&=\sum_{n\geq0}\bigg[\sum_{k=1}^1d(1,k)a_{1,1}(k,n)\bigg]t^n+ \rho\bigg\{\sum_{n\geq0}\bigg[\sum_{k=1}^1d(1,k)b_{1,1}(k,n)\bigg]t^n\bigg\} \\&=\sum_{n\geq0}c(2,n)t^n+\rho\bigg(\sum_{n\geq0}d(2,n)t^n\bigg). \end{align*} $$

From Lemma 2.5,

$$ \begin{align*} \pi(c(2,n))&=\pi(d(1,1))+\pi(a_{1,1}(1,n))\geq1+\bigg\lfloor\frac{5 n+1}{3}\bigg\rfloor , \\ \pi(d(2,n))&=\pi(d(1,1))+\pi(b_{1,1}(1,n))\geq1+\bigg\lfloor\frac{5 n+3}{3}\bigg\rfloor. \end{align*} $$

Thus, the result holds for $L_{\alpha }$ when $\alpha =1, 2$ . We proceed by induction. Suppose that the result holds for $L_{2\alpha }$ . Then, applying (2.2) and (3.5),

$$ \begin{align*} L_{2\alpha+1}&=U^{(0,0)}(L_{2\alpha})=U_5(K\cdot L_{2\alpha})\\ &=\sum_{n\geq0}c(2\alpha,n) U_5(K t^n)+\sum_{n\geq0}d(2\alpha,n)U_5(K\rho t^n) \\ &=\sum_{n\geq0}c(2\alpha,n)\nonumber \nonumber U^{(0,0)}( t^n)+\sum_{n\geq0}d(2\alpha,n) U^{(0,1)}(t^n)\\ &=\sum_{n\geq0}c(2\alpha,n) \bigg(\sum_{k=\lceil{(n+1)}/{5}\rceil}^{\infty} a_{0,0}(n, k) t^k+\rho\bigg(\sum_{k=\lceil{(n+1)}/{5}\rceil}^{\infty} b_{0,0}(n, k) t^k\bigg)\bigg)\nonumber \\ &\quad+\sum_{n\geq0}d(2\alpha,n) \bigg(\sum_{k=\lceil{(n+1}/{5}\rceil}^{\infty} a_{0,1}(n, k) t^k+\rho\bigg(\sum_{k=\lceil{(n+1)}/{5}\rceil}^{\infty} b_{0,1}(n, k) t^k\bigg)\bigg)\nonumber \\ &=\sum_{n\geq1} \bigg[\sum_{k=0}^{\infty}(c(2\alpha,k) a_{0,0}(k, n) +d(2\alpha,k) a_{0,1}(k, n))\bigg]t^n\nonumber \\&\quad+\rho\bigg\{\sum_{n\geq1}\nonumber \bigg[\sum_{k=0}^{\infty}(c(2\alpha,k) b_{0,0}(k, n) +d(2\alpha,k) b_{0,1}(k, n))\bigg]t^n\bigg\}\\ &=\sum_{n\geq1}c(2\alpha+1,n)t^n+\rho\bigg(\sum_{n\geq1}d(2\alpha+1,n)t^n\bigg). \end{align*} $$

Moreover, using Lemma 2.5, (3.7) and (3.8), we find that

$$ \begin{align*} \pi(c(2\alpha+1,n))&\geq\min_{k\geq0}\{\pi(c(2\alpha,k))+\pi( a_{0,0}(k, n)), \pi(d(2\alpha,k))+\pi( a_{0,1}(k, n))\}\\ &\geq\alpha+\bigg\lfloor\frac{5 n-2}{3}\bigg\rfloor \end{align*} $$

and

$$ \begin{align*} \pi(d(2\alpha+1,n))&\geq\min_{k\geq0}\{\pi(c(2\alpha,k))+\pi( b_{0,0}(k, n)), \pi(d(2\alpha,k))+\pi( b_{0,1}(k, n))\} \\ &\geq\alpha+\bigg\lfloor\frac{5 n}{3}\bigg\rfloor. \end{align*} $$

Next, we consider $L_{2\alpha +2}$ . Using (2.2) and (3.6),

$$ \begin{align*} L_{2\alpha+2}&=U^{(1,0)}(L_{2\alpha+1})=U_5(M\cdot L_{2\alpha+1})\nonumber\\ &=\sum_{n\geq1}c(2\alpha+1,n) U_5(M t^n)+\sum_{n\geq1}d(2\alpha+1,n)U_5(M\rho t^n)\nonumber \\ &=\sum_{n\geq1}c(2\alpha+1,n)\nonumber \nonumber U^{(1,0)}( t^n)+\sum_{n\geq1}d(2\alpha+1,n) U^{(1,1)}(t^n)\\ &=\sum_{n\geq1}c(2\alpha+1,n) \bigg(\sum_{k=\lceil{(n-4)}/{5}\rceil}^{\infty} a_{1,0}(n, k) t^k+\rho\bigg(\sum_{k=\lceil{(n-4)}/{5}\rceil}^{\infty} b_{1,0}(n, k) t^k\bigg)\bigg)\nonumber \\ &\quad+\sum_{n\geq1}d(2\alpha+1,n) \bigg(\sum_{k=\lceil{(n-4)}/{5}\rceil}^{\infty} a_{1,1}(n, k) t^k+\rho\bigg(\sum_{k=\lceil{(n-4)}/{5}\rceil}^{\infty} b_{1,1}(n, k) t^k\bigg)\bigg)\nonumber \\ &=\sum_{n\geq0} \bigg[\sum_{k=1}^{\infty}(c(2\alpha+1,k) a_{1,0}(k, n) +d(2\alpha+1,k) a_{1,1}(k, n))\bigg]t^n\nonumber \\&\quad+\rho\bigg\{\sum_{n\geq0}\nonumber \bigg[\sum_{k=1}^{\infty}(c(2\alpha+1,k) b_{1,0}(k, n) +d(2\alpha+1,k) b_{1,1}(k, n))\bigg]t^n\bigg\}\\ &=\sum_{n\geq0}c(2\alpha+2,n)t^n+\rho\bigg(\sum_{n\geq0}d(2\alpha+2,n)t^n\bigg). \end{align*} $$

Then again by Lemma 2.5, (3.7) and (3.8),

$$ \begin{align*} \pi(c(2\alpha+2,n))&\geq\min_{k\geq1}\{\pi(c(2\alpha+1,k))+\pi( a_{1,0}(k, n)), \pi(d(2\alpha+1,k))+\pi( a_{1,1}(k, n))\}\nonumber\\ &\geq\alpha+1+\bigg\lfloor\frac{5 n+1}{3}\bigg\rfloor \nonumber \end{align*} $$

and

$$ \begin{align*} \pi(d(2\alpha+2,n))&\geq\min_{k\geq1}\{\pi(c(2\alpha+1,k))+\pi( b_{1,0}(k, n)), \pi(d(2\alpha+1,k))+\pi( b_{1,1}(k, n))\}\nonumber\\ &\geq\alpha+1+\bigg\lfloor\frac{5 n+3}{3}\bigg\rfloor \nonumber. \end{align*} $$

Thus, the result holds for $L_{2\alpha +2}$ . This proves Theorem 3.3 by induction.

Corollary 3.4. For $\alpha \geq 1$ ,

$$ \begin{align*} e(5^{\alpha}n+\lambda_\alpha)\equiv0 \pmod{5^{\lfloor{(\alpha+1)}/{2}\rfloor }}. \end{align*} $$

Proof. The result follows immediately from Lemma 3.2 and Theorem 3.3.

Note that (3.4) together with Corollary 3.4 implies (1.5). Thus, the proof of Theorem 1.1 is complete.

Footnotes

This work is supported by NSFC (National Natural Science Foundation of China) through Grant No. NSFC 12071331.

References

Andrews, G. E., Berndt, B. C., Chan, S. H., Kim, S. and Malik, A., ‘Four identities for third order mock theta functions’, Nagoya Math. J. 239 (2020), 173204.10.1017/nmj.2018.35CrossRefGoogle Scholar
Andrews, G. E. and Lewis, R., ‘The ranks and cranks of partitions moduli $2$ , $3$ , and $4$ ’, J. Number Theory 85(1) (2000), 7484.10.1006/jnth.2000.2537CrossRefGoogle Scholar
Atkin, A. O. L. and Swinnerton-Dyer, H. P. F., ‘Some properties of partitions’, Proc. Lond. Math. Soc. (3) 4 (1954), 84106.10.1112/plms/s3-4.1.84CrossRefGoogle Scholar
Bringmann, K., ‘Asymptotics for rank partition functions’, Trans. Amer. Math. Soc. 361(7) (2009), 34833500.10.1090/S0002-9947-09-04553-XCrossRefGoogle Scholar
Bringmann, K. and Kane, B., ‘Inequalities for differences of Dyson’s rank for all odd moduli’, Math. Res. Lett. 17(5) (2010), 927942.10.4310/MRL.2010.v17.n5.a10CrossRefGoogle Scholar
Bringmann, K. and Mahlburg, K., ‘Inequalities between ranks and cranks’, Proc. Amer. Math. Soc. 137(8) (2009), 25672574.10.1090/S0002-9939-09-09806-2CrossRefGoogle Scholar
Chan, S. and Mao, R., ‘The rank and crank of partitions modulo $3$ ’, Int. J. Number Theory 12(4) (2016), 10271053.10.1142/S1793042116500640CrossRefGoogle Scholar
Chen, D., Chen, R. and Garvan, F., ‘Congruences modulo powers of 5 for the rank parity functions’, Hardy-Ramanujan J. 43 (2020), 2445.Google Scholar
Dyson, F. J., ‘Some guesses in the theory of partitions’, Eureka 8 (1944), 1015.Google Scholar
Fan, Y., Xia, E. X. W. and Zhao, X., ‘New equalities and inequalities for the ranks and cranks of partitions’, Adv. Appl. Math. 146 (2023), Article no. 102486.10.1016/j.aam.2023.102486CrossRefGoogle Scholar
Garvan, F. G., ‘A tutorial for the MAPLE ETA package’, Preprint, 2019, arXiv:1907.09130.Google Scholar
Lewis, R., ‘On the ranks of partitions modulo $9$ ’, Bull. Lond. Math. Soc. 23(5) (1991), 417421.10.1112/blms/23.5.417CrossRefGoogle Scholar
Mao, R., ‘Ranks of partitions modulo $10$ ’, J. Number Theory 133 (2013), 36783702.10.1016/j.jnt.2013.05.014CrossRefGoogle Scholar
Mao, R. and Zhou, Z., ‘Congruences modulo powers of $5$ for odd ranks’, Preprint.Google Scholar
Newman, M., ‘Construction and application of a class of modular functions. II’, Proc. Lond. Math. Soc. (3) 9 (1959), 373387.10.1112/plms/s3-9.3.373CrossRefGoogle Scholar
Paule, P. and Radu, S., ‘The Andrews–Sellers family of partition congruences’, Adv. Math. 230(3) (2012), 819838.10.1016/j.aim.2012.02.026CrossRefGoogle ScholarPubMed
Santa-Gadea, N., ‘On some relations for the rank moduli $9$ and $12$ ’, J. Number Theory 40(2) (1992), 130145.Google Scholar
Wang, L. and Yang, Y., ‘The smallest parts function associated with $\omega (q)$ ’, Int. J. Number Theory 18(10) (2022), 22792297.10.1142/S1793042122501160CrossRefGoogle Scholar