Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T20:06:00.483Z Has data issue: false hasContentIssue false

CONCISENESS OF COPRIME COMMUTATORS IN FINITE GROUPS

Published online by Cambridge University Press:  18 July 2013

CRISTINA ACCIARRI*
Affiliation:
Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900, Brazil email [email protected]
PAVEL SHUMYATSKY
Affiliation:
Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900, Brazil email [email protected]
ANITHA THILLAISUNDARAM
Affiliation:
Institut für Algebra und Geometrie, Mathematische Fakultät, Otto-von-Guericke-Universität Magdeburg, 39016 Magdeburg, Germany email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $G$ be a finite group. We show that the order of the subgroup generated by coprime ${\gamma }_{k} $-commutators (respectively, ${\delta }_{k} $-commutators) is bounded in terms of the size of the set of coprime ${\gamma }_{k} $-commutators (respectively, ${\delta }_{k} $-commutators). This is in parallel with the classical theorem due to Turner-Smith that the words ${\gamma }_{k} $ and ${\delta }_{k} $ are concise.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Acciarri, C. and Shumyatsky, P., ‘On words that are concise in residually finite groups’, J. Pure. Appl. Algebra (2013), to appear, arXiv:1212.0581[math.GR].CrossRefGoogle Scholar
Acciarri, C., Fernández-Alcober, G. A. and Shumyatsky, P., ‘A focal subgroup theorem for outer commutator words’, J. Group Theory 15 (2012), 397405.CrossRefGoogle Scholar
Brazil, S., Krasilnikov, A. and Shumyatsky, P., ‘Groups with bounded verbal conjugacy classes’, J. Group Theory 9 (2006), 127137.CrossRefGoogle Scholar
Fernández-Alcober, G. A. and Morigi, M., ‘Outer commutator words are uniformly concise’, J. Lond. Math. Soc. 82 (2010), 581595.Google Scholar
Isaacs, I. M., Finite Group Theory, Graduate Studies in Mathematics, 92 (American Mathematical Society, Providence, RI, 2008).Google Scholar
Ivanov, S. V., ‘P. Hall’s conjecture on the finiteness of verbal subgroups’, Izv. Vyssh. Uchebn. Zaved. Mat. (6) (1989), 6070 (in Russian); translation in Soviet Math. (Iz. VUZ) 33(6) (1989), 59–70.Google Scholar
Liebeck, M. W., O’Brien, E. A., Shalev, A. and Tiep, P. H., ‘The Ore conjecture’, J. Eur. Math. Soc. (JEMS) 12 (4) (2010), 9391008.CrossRefGoogle Scholar
Merzlyakov, Ju. I., ‘Verbal and marginal subgroups of linear groups’, Dokl. Akad. Nauk SSSR 177 (1967), 10081011 (in Russian).Google Scholar
Ol’shanskii, A. Yu., Geometry of Defining Relations in Groups, Mathematics and its Applications, 70 (Soviet Series) (Kluwer Academic, Dordrecht, 1991).Google Scholar
Pellegrini, M. A. and Shumyatsky, P., ‘Coprime commutators in $\mathrm{PSL} (2, q)$’, Arch. Math. 99 (2012), 501507.Google Scholar
Robinson, D. J. S., Finiteness Conditions and Generalized Soluble Groups, Part 1, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62 (Springer, New York-Berlin, 1972).CrossRefGoogle Scholar
Rose, J. S., A Course on Group Theory (Dover, New York, NY, 1994).Google Scholar
Shumyatsky, P., ‘Commutators of elements of coprime orders in finite groups’, Forum Math., to appear.Google Scholar
Shumyatsky, P., ‘On the exponent of a verbal subgroup in a finite group’, J. Aust. Math. Soc., to appear.Google Scholar
Turner-Smith, R. F., ‘Finiteness conditions for verbal subgroups’, J. Lond. Math. Soc. 41 (1966), 166176.Google Scholar
Wilson, J., ‘On outer-commutator words’, Canad. J. Math. 26 (1974), 608620.Google Scholar