Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T10:28:49.673Z Has data issue: false hasContentIssue false

Composition operators on some Möbius invariant Banach spaces

Published online by Cambridge University Press:  17 April 2009

Shamil Makhmutov
Affiliation:
Department of Mathematics, Ufa State Aviation Technical University, Ufa 450000, Russia, e-mail: [email protected]
Maria Tjani
Affiliation:
Department of Mathematical Sciences, 301 Science Engineering Building, University of Arkansas, Fayetteville AR 72701, United States of America, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterise the compact composition operators from any Mobius invariant Banach space to VMOA, the space of holomorphic functions on the unit disk U that have vanishing mean oscillation. We use this to obtain a characterisation of the compact composition operators from the Bloch space to VMOA. Finally, we study some properties of hyperbolic VMOA functions. We show that a function is hyperbolic VMOA if and only if it is the symbol of a compact composition operator from the Bloch space to VMOA.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Anderson, J.M., Clunie, J. and Pommerenke, Ch., ‘On Bloch functions and normal functions’, J. Reine Angew. Math. 270 (1974), 1237.Google Scholar
[2]Arazy, J., Fisher, S.D. and Peetre, J., ‘Mobius invariant function spaces’, J. Reine Angew. Math. 363 (1985), 110145.Google Scholar
[3]Aulaskari, R., Stegenga, D.A. and Xiao, J., ‘Some subclasses of BMOA and their characterization in terms of Carleson measures’, Rocky Mountain J. Math. 26 (1996), 485506.CrossRefGoogle Scholar
[4]Baernstein, A., ‘Analytic functions of bounded mean oscillations’, in Aspects of Contemporary Complex Analysis, (Brannan, D.A. and Clunie, J.G., Editors) (Academic Press, London, 1980), pp. 336.Google Scholar
[5]Bourdon, P.S., Cima, J.A. and Matheson, A., ‘Compact composition operators on BMOA’, Trans. Amer. Math. Soc. (to appear).Google Scholar
[6]Choe, B.R., Ramey, W. and Ullrich, D., ‘Bloch-to-BMOA pullbacks on the disk’, Proc. Amer. Math. Soc. 125 (1997), 29872996.CrossRefGoogle Scholar
[7]Conway, J.B., A course in functional analysis (Springer-Verlag, Berlin, Heidelberg, New York, 1985).CrossRefGoogle Scholar
[8]Dunford, N. and Schwartz, J., Linear operators part I: General theory (John Wiley and Sons, New York, 1988).Google Scholar
[9]Garnett, J.B., Bounded analytic functions (Academic Press, New York, 1981).Google Scholar
[10]Madigan, P.K. and Matheson, A., ‘Compact composition operators on the Bloch space’, Trans. Amer. Math. Soc. 347 (1995), 26792687.Google Scholar
[11]Makhmutov, S., ‘Hyperbolic Besov functions and Bloch-to-Besov composition operators’, Hokkaido Math. J. 26 (1997), 699711.CrossRefGoogle Scholar
[12]Nevanlinna, R., Analytic functions, (second edition) (Springer-Verlag, Berlin, Heidelberg, New York, 1970).CrossRefGoogle Scholar
[13]Pommerenke, C., ‘Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation’, Comment. Math. Helv. 52 (1977), 591602.CrossRefGoogle Scholar
[14]Rubel, L.A. and Timoney, R.M., ‘An extremal property of the Bloch space’, Proc. Amer. Math. Soc. 75 (1979), 4549.CrossRefGoogle Scholar
[15]Sarason, D., Operators theory on the unit circle (Lecture notes of Virginia Polytechnic Institute and State University, Blacksburg, VA, 1978).Google Scholar
[16]Shapiro, J.H., ‘The essential norm of a coposition operator’, Ann of Math. 125 (1987), 375404.Google Scholar
[17]Shapiro, J.H., Composition operators and classical function theory (Springer-Verlag, Berlin, Heidelberg, New York, 1993).CrossRefGoogle Scholar
[18]Smith, W. and Zhao, R., ‘Composition operators mapping into the Qp spaces’, Analysis 17 (1997), 239263.CrossRefGoogle Scholar
[19]Smith, W., ‘Compactness of composition operators on BMOA’, Proc. Amer. Math. Soc. (to appear).Google Scholar
[20]Tjani, M., Compact composition operators on some Möbius invariant Banach spaces, (Thesis) (Michigan State University, 1996).Google Scholar
[21]Yamashita, S., ‘Holomorphic functions of hyperbolically bounded mean oscillation’, Boll. Un. Mat. Ital. B (6) 5-B (1986), 9831000.Google Scholar
[22]Zhu, K., Operator theory on function spaces (Marcel Dekker, New York, 1990).Google Scholar
[23]Zygmund, A., Trigonometric series, Volume I, (second edition) (Cambridge University Press, Cambridge, 1959).Google Scholar