Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T20:39:04.571Z Has data issue: false hasContentIssue false

The completion of a topological group

Published online by Cambridge University Press:  17 April 2009

Eric C. Nummela
Affiliation:
Department of Mathematics, New England College, Henniker, New Hampshire 03242, USA.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During the 1920's and 30's, two distinct theories of “completions” for topological spaces were being developed: the French school of mathematics was describing the familiar notion of “complete relative to a uniformity”, and the Russian school the less well-known idea of “absolutely closed”. The two agree precisely for compact spaces.

The first part of this article describes these two notions of completeness; the remainder is a presentation of the interesting, but apparently unrecorded, fact that the two ideas coincide when put in the context of topological groups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

[1]Alexandroff, A.D., “On the extension of a Hausdorff space to an H-closed space”, C.R. (Dokl.) Acad. Sci. URSS (N.S.) 37 (1942), 118121.Google Scholar
[2] П. Алекандров [Alexandroff, P.], “Бикомпактные расширения топологических пространсвах Рауме” [Bikompakte Erweiterungen topologischer Räume], Rec. Math. [Mat. Sb.] (N.S.) 5 (47) (1939), 403423.Google Scholar
[3]Alexandroff, Paul und Urysohn, Paul, “Zur Theorie der topologischen Räume”, Math. Ann. 92 (1924), 258266.CrossRefGoogle Scholar
[4]Banaschewski, Bernhard, “Extensions of topological spaces”, Canad. Math. Bull. 7 (1964), 122.CrossRefGoogle Scholar
[5]Bourbaki, N., Éléments de mathématique. Part I. Les structures fondamentales de I'analyse. Livre III. Topologie générale. Chapitres III et IV (Actual. Sci. Ind., 916. Hermann, Paris, 1942).Google Scholar
[6]Bourbaki, Nicolas, Elements of mathematics. General topology, Parts 1 and 2 (Hermann, Paris; Addison-Wesley, Reading, Massachusetts; Palo Alto; London; 1966).Google Scholar
[7]Cartan, Henri, “Théorie des filtres”, C.R. Acad. Sci. Paris 205 (1937), 595598.Google Scholar
[8]Cartan, Henri, “Filtres et ultrafiltres”, C.R. Acad. Sci. Paris 205 (1937), 111119.Google Scholar
[9]Dieudonné, Jean, “Sur la complétion des groupes topologiques”, C.R. Acad. Sci. Paris 218 (1944), 774776.Google Scholar
[10]Fomin, S., “Extensions of topological spaces”, Ann. of Math. (2) 44 (1943), 471480.CrossRefGoogle Scholar
[11]Hausdorff, Felix, Grundzüge der Mengenlehre (Veit, Leipzig, 1914. Reprinted: Chelsea, Hew York, 1949).Google Scholar
[12]Klee, V.L. Jr., “Invariant metrics in groups (Solution of a problem of Banach)”, Proc. Amer. Math. Soc. 3 (1952), 484487.CrossRefGoogle Scholar
[13] Д. Раиков [Raikov, D.], “О пополнение топологичсских групп” [On the completion of topological groups”, Bull. Acad. Sci. URSS Sér. Math. [Izv. Akad. Nauk SSSR] 10 (1946), 513528.Google Scholar
[14]Semadeni, Z., “Sur les groupes métriques complets”, Colloq. Math. 7 (1959), 3539.CrossRefGoogle Scholar
[15]Steen, Lynn A., Seebach, J. Arthur Jr., Counterexamples in topology (Holt, Rinehart and Winston, New York, Montreal, London, 1970).Google Scholar
[16]Weil, André, Sur les espaces à structure uniforme et sur la topologie générale (Actualités Scientifiques et Industrielles, 551. Hermann, Paris, 1937).Google Scholar
[17]Weston, J.D., “Incomplete subspaces of a Hausdorff space”, Arch. Math. 10 (1959), 4141.CrossRefGoogle Scholar
[18]Yang, J.S., “A note on uniform structures of topological groups”, Amer. Math. Monthly 79 (1972), 383385.CrossRefGoogle Scholar