No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
A compact quantum group is defined to be a unital Hopf C*–algebra generated by the matrix elements of a family of invertible corepresentations. We present a version of the Tannaka–Krein duality theorem for compact quantum groups in the context of abstract categories; this result encompasses the result of Woronowicz and the classical Tannaka-Krein duality theorem. We construct the orthogonality relations (similar to the case of compact groups). The Plancherel theorem is then established.