Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T13:11:31.377Z Has data issue: false hasContentIssue false

Common fixed points of two nonexpansive mappings in Banach spaces

Published online by Cambridge University Press:  17 April 2009

Tomonari Suzuki
Affiliation:
Department of Mathematics and Information Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we discuss a necessary and sufficient condition for common fixed points of two nonexpansive mappings. We then prove a convergence theorem to a common fixed point. Finally, we discuss the existence of a nonexpansive retraction onto the set of common fixed points of nonexpansive mappings. In these theorems, we do not assume the strict (uniform) convexity of the norm of the Banach space.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1] Atsushiba, S. and Takahashi, W., ‘Approximating common fixed points of two nonexpansive mappings in Banach spaces’, Bull. Austral. Math. Soc. 57 1998, 117127.CrossRefGoogle Scholar
[2] Belluce, L.P. and Kirk, W.A., ‘Fixed-point theorems for families of contraction mappings’, Pacific J. Math. 18 1966, 213217.CrossRefGoogle Scholar
[3] Belluce, L.P. and Kirk, W.A., ‘Nonexpansive mappings and fixed-points in Banach spaces’, Illinois J. Math 11 1967, 474479.CrossRefGoogle Scholar
[4] Browder, F.E., ‘Nonexpansive nonlinear operators in a Banach space’, Proc. Nat. Acad. Sci. U.S.A. 54 1965, 10411044.CrossRefGoogle Scholar
[5] Bruck, R.E., ‘Nonexpansive retracts of Banach spaces’, Bull. Amer. Math. Soc. 76 1970, 384386.CrossRefGoogle Scholar
[6] Bruck, R.E., ‘Properties of fixed-point sets of nonexpansive mappings in Banach spaces’, Trans. Amer. Math. Soc. 179 1973, 251262.CrossRefGoogle Scholar
[7] Bruck, R.E., ‘A common fixed point theorem for a commuting family of nonexpansive mappings’, Pacific J. Math. 53 1974, 5971.CrossRefGoogle Scholar
[8] Crombez, G., ‘Image recovery by convex combinations of projections’, J. Math. Anal. Appl. 155 1991, 413419.CrossRefGoogle Scholar
[9] DeMarr, R., ‘Common fixed points for commuting contraction mappings’, Pacific J. Math. 13 1963, 11391141.CrossRefGoogle Scholar
[10] van Dulst, D., ‘Equivalent norms and the fixed point property for nonexpansive mappings’, J. London Math. Soc. (2) 25 1982, 139144.CrossRefGoogle Scholar
[11] Edelstein, M., ‘A remark on a theorem of M.A. Krasnoselski’, Amer. Math. Monthly 73 1966, 509510.CrossRefGoogle Scholar
[12] Edelstein, M. and O'Brien, R.C., ‘Nonexpansive mappings, asymptotic regularity and successive approximations’, J. London Math. Soc. (2) 17 1978, 547554.CrossRefGoogle Scholar
[13] de Figueiredo, D.G. and Karlovitz, L.A., ‘On the extension of contractions on normed spaces’, in 1970 Nonlinear Functional Analysis, Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968 (American Mathematical Society, Providence, R.I), pp. 95104.Google Scholar
[14] Goebel, K. and Kirk, W.A., Topics in metric fixed theory, Cambridge Studies in Advanced Mathematics 28 (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
[15] Göhde, D., ‘Zum Prinzip def kontraktiven Abbildung’, Math. Nachr. 30 1965, 251258.CrossRefGoogle Scholar
[16] Gossez, J.-P. and Dazo, E. Lami, ‘Some geometric properties related to the fixed point theory for nonexpansive mappings’, Pacific J. Math. 40 1972, 565573.CrossRefGoogle Scholar
[17] Groetsch, C.W., ‘A note on segmenting Mann iterates’, J. Math. Anal. Appl. 40 1972, 369372.CrossRefGoogle Scholar
[18] Ishikawa, S., ‘Fixed points and iteration of a nonexpansive mapping in a Banach space’, Proc. Amer. Math. Soc. 59 1976, 6571.CrossRefGoogle Scholar
[19] Ishikawa, S., ‘Common fixed points and iteration of commuting nonexpansive mappings’, Pacific J. Math. 80 1979, 493501.CrossRefGoogle Scholar
[20] Kelley, J.L., General topology (Van Nostrand Reinhold Company, Toronto, New York, London, 1955).Google Scholar
[21] Kirk, W.A., ‘A fixed point theorem for mappings which do not increase distances’, Amer. Math. Monthly 72 1965, 10041006.CrossRefGoogle Scholar
[22] Krasnoselskii, M.A., ‘Two remarks on the method of successive approximations’, (in Russian), Uspehi Mat. Nauk 10 1955, 123127.Google Scholar
[23] Dazo, E. Lami, ‘Multivalued nonexpansive mappings and Opial's condition’, Proc. Amer. Math. Soc. 38 1973, 286292.Google Scholar
[24] Lim, T.C., ‘A fixed point theorem for families of nonexpansive mappings’, Pacific J. Math 53 1974, 487493.CrossRefGoogle Scholar
[25] Lin, P.-K., Tan, K.K. and Xu, H.K., ‘Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings’, Nonlinear Anal. 24 1995, 929946.CrossRefGoogle Scholar
[26] Linhart, J., ‘Beiträge zur Fixpunkttheorie nichtexpandierender Operatoren’, Monatsh. Math. 76 1972, 239249.CrossRefGoogle Scholar
[27] Mann, W.R., ‘Mean value methods in iteration’, Proc. Amer. Math. Soc. 4 1953, 506510.CrossRefGoogle Scholar
[28] Opial, Z., ‘Weak convergence of the sequence of successive approximations for nonexpansive mappings’, Bull. Amer. Math. Soc. 73 1967, 591597.CrossRefGoogle Scholar
[29] Prus, S., ‘Banach spaces with the uniform Opial property’, Nonlinear Anal. 18 1992, 697704.CrossRefGoogle Scholar
[30] Reich, S., ‘Weak convergence theorems for nonexpansive mappings’, J. Math. Anal. Appl. 67 1979, 274276.CrossRefGoogle Scholar
[31] Sims, B., ‘A support map characterization of the Opial conditions’, Proc. Centre Math. Anal. Austral. Nat. Univ. 9, 259264.Google Scholar
[32] Suzuki, T., ‘Strong convergence theorem to common fixed points of two nonexpansive mappings in general Banach spaces’, J. Nonlinear Convex Anal. 3 2002, 381391.Google Scholar
[33] Suzuki, T. and Takahashi, W., ‘Weak and strong convergence theorems for nonexpansive mappings in Banach spaces’, Nonlinear Anal. 47 2001, 28052815.CrossRefGoogle Scholar
[34] Takahashi, W., Nonlinear functional analysis (Yokohama Publishers, Yokohama, 2000).Google Scholar