Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T02:16:04.140Z Has data issue: false hasContentIssue false

The coincidence problem for compositions of set-valued maps

Published online by Cambridge University Press:  17 April 2009

H. Ben-El-Mechaiekh
Affiliation:
Department of Mathematics, Brock University, St Catharines, Ontario L2S 3A1, Canada
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main purpose of this work is to give a general and elementary treatment of the fixed point and the coincidence problems for compositions of set-valued maps with not necessarily locally convex domains and to display, once more, the central rôle played by the selection property.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Allen, G., ‘Variational inequalities, complementarity problems and duality theorems’, J. Math. Anal. Appl. 58 (1977), 110.Google Scholar
[2]Aubin, J.P. and Cellina, A., Differential inclusion (Springer-Verlag, Berlin, Heidelberg, New York, 1984).CrossRefGoogle Scholar
[3]Ben-El-Mechaiekh, H., Quelques principles topologiques en analyse convexe (Thèse de PhD, Univ. de Montréal, 1988).Google Scholar
[4]Ben-El-Mechaiekh, H., ‘Coincidence theorems for set-valued maps’, (preprint).Google Scholar
[5]Ben-El-Mechaiekh, H., Deguire, P. and Granas, A., ‘Une alternative non-linéaire en analyse convex et application’, C. R. Accad. Sci Paris Sér 1 Math. 295 (1982), 257259.Google Scholar
[6]Ben-El-Mechaiekh, H., Deguire, P. and Granas, A., ‘Points fixes et coincidences pour les fonctions multivoques III (Applications de type M et M* )’, C.R. Acad. Sci. Paris, Série I (1987), 305381.Google Scholar
[7]Berge, C., Espaces topologiques, fonctions multivoques (Dunod, Paris, 1959).Google Scholar
[8]Browder, F.E., ‘The fixed point theory of multi-valued mappings in topological vector spaces’, Math. Ann. 177 (1968), 283301.Google Scholar
[9]Dugundji, J., ‘An extension of Tietze's theorem’, Pacific J. Math. (1951), 353367.Google Scholar
[10]Fournier, G. and Górniewicz, L., ‘The Lefschetz fixed point theorem for multivalued maps of non-metrizable spaces’, Fund. Math. 92 (1976), 213222.CrossRefGoogle Scholar
[11]Fan, K., ‘Fixed point and minimax theorems in locally convex topological linear spaces’, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121126.CrossRefGoogle ScholarPubMed
[12]Fan, K., ‘Some properties of convex sets related to fixed point theorems’, Math. Ann. 266 (1984), 519537.CrossRefGoogle Scholar
[13]Górniewicz, L., ‘Homological methods in fixed-point theory of multi-valued maps’, Dissertationes Math.,(Roprawwy Mat) CXXXIX (1976).Google Scholar
[14]Górniewicz, L. and Granas, A., ‘Some general theorems in coincidence theory I’, J. Math. Pures Appl. 60 (1981), 361373.Google Scholar
[15]Górniewicz, L. and Granas, A., ‘The Lefschetz fixed point theorem for multivalued mappings’, paper given at Colloque International Théorie du Point fixe, Marseille.Google Scholar
[16]Granas, A., Points fixes pour les applications compactes: espaces de Lefschetz et la théorie de l'indice (Presses Univ. de Montréal, 1980).Google Scholar
[17]Granas, A. and Liu, F.C., ‘Coincidences for set-valued maps and minimax inequalities’, J. Math. Pures Appl. 65 (1986), 119148.Google Scholar
[18]Ha, C.W., ‘Minimax and fixed point theorems’, Math. Ann. 248 (1980), 7377.Google Scholar
[19]Hanner, O., ‘Retraction and extension of mappings of metric and non-metric spaces’, Ark.Mat. 2 (1952), 315360.CrossRefGoogle Scholar
[20]Hurewicz, W. and Wallman, H., Dimension Theory (Princeton, 1941).Google Scholar
[21]Kakutani, S., ‘A generalization of Brouwer's fixed point theorem’, Duke Math. J. 8 (1941), 457459.Google Scholar
[22]Klee, V., ‘Leray-Schauder theory without local convexity’, Math. Ann. 141 (1960), 286296.Google Scholar
[23]Lassonde, M., ‘On the use of KKM multifunctions in fixed point theory and related topics’, J. Math. Anal. Appl 97 (1983), 151201.CrossRefGoogle Scholar
[24]Lassonde, M., ‘Fixed points for Kakutani factorizable multifunctions’, (Preprint, 1989).CrossRefGoogle Scholar
[25]Michael, B., ‘Continuous selections’, Ann. of Math. 63 (1956), 361382.Google Scholar
[26]Michael, B., ‘Continuous selections and countable sets’, Fund. Math. 111 (1981), 110.CrossRefGoogle Scholar
[27]Pasicki, L., ‘Composition of compact mappings has a fixed point’, (Preprint, 1980).Google Scholar
[28]Ricceri, B., ‘Fixed points of lower semicontinuous multifunctions and applications: alternative and minimax theorems’, Rend. Accad. Naz. XL, Mem. Mat. 16 (1985), 331338.Google Scholar
[29]Tarafdar, B., ‘A fixed point theorem equivalent to Fan-Knaster-Kuratowski Mazurkiewicz's theorem’, J. Math. Anal. Appl. 128 (1987), 475479.CrossRefGoogle Scholar
[30]Tarafdar, E., ‘On two theorems concerning sets with convex sections’, Bull. Austral. Math. Soc. 38 (1988), 397400.CrossRefGoogle Scholar
[31]Vietoris, L., ‘Ueber den höheren zusammenhang kompakier raume und eine kiasse von zusammenhangstrenen abbidungen’, Math. Ann. 97 (1927), 454472.Google Scholar