No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
Let T be an eventually expansive transformation on the unit interval satisfying the Markov condition. The T is an ergodic transformation on (X, ß, μ) where X = [0, 1), ß is the Borel σ-algebra on the unit interval and μ is the T invariant absolutely continuous measure. Let G be a finite subgroup of the circle group or the whole circle group and φ: X → G be a measurable function with finite discontinuity points. We investigate ergodicity of skew product transformations Tφ on X × G by showing the solvability of the coboundary equation φ(x) g (Tx) = λg (x), |λ| = 1. Its relation with the uniform distribution mod M is also shown.