Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T02:42:34.819Z Has data issue: false hasContentIssue false

A class of strongly degenerate elliptic operators

Published online by Cambridge University Press:  17 April 2009

Duong Minh Duc
Affiliation:
International Centre of Theoretical Physics, P.O. Box 586, Miramare, 34100 Trieste, Italy.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using a weighted Poincaré inequality, we study (ω1,…,ωn)-elliptic operators. This method is applied to solve singular elliptic equations with boundary conditions in W1,2. We also obtain a result about the regularity of solutions of singular elliptic equations. An application to (ω1,…,ωn)-parabolic equations is given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

[1]Amanov, D., ‘Some boundary value problems for a degenerate elliptic equation in an unbounded domain’, Ivz. Akad. Nauk UzSSR Ser. Fiz. Mat. Nauk No.1 (1984), 813.Google Scholar
[2]Baouendi, M.S., ‘Sur une classe d'operateurs elliptiques degenérés’, Bull. Soc. Math. France 95 (1965), 4587.Google Scholar
[3]Buttu, A., ‘Il Problema di Cauchy-Dirichlet per un operatore parabolico degenere del secondo ordine’, Rend. Sem. Fac. Sci. Univ. Cagliari 53 (1983), 8799.Google Scholar
[4]Chabrowski, J.H., ‘On the Dirichlet problem for a linear elliptic equation with unbounded coefficients’, Boll. Un. Math. Ital. B (6) 5 (1986), 7191.Google Scholar
[5]Chabrowsky, J.H. and Thompson, H.B., ‘On the boundary values of the solution of linear elliptic equations’, Bull. Austral. Math. Soc. 27 (1983), 130.Google Scholar
[6]Colaps, G., ‘Un semigruppo generato da un operatore differenziale quasi-ellitico degenere’, Rend. Accad. Sci. Fis. Mat. Napoli (4) 50 (1983), 419439.Google Scholar
[7]Duc, D.M., ‘Coercive properties of elliptic-parabolic operators’, Applicable Ana. (to appear).Google Scholar
[8]Duc, D.M. and Dung, L., ‘Compactness of imbedding of Sobolev spaces’, J. London Math. Soc. (to appear).Google Scholar
[9]Fichera, G., Sulle equazioni differenziali lineari ellittico paraboliche del secondo ordine (Atti. Accad. Naz., Lincei, 1956).Google Scholar
[10]Fichera, G., Premesse ad una teoria generale dei problemi al contorno per le equazione differenziali, Corso Intituto Naz Alta Mat. (Libreria Vechi, Roma, 1958).Google Scholar
[11]Fichera, G., ‘On a unified theory of boundary value problems for elliptic-parabolic equations of second order’, in Boundary problems in differential equations, Edited by Langer, R.E. (The Universtiy of Wisconsin Press, Madison, 1960).Google Scholar
[12]Franchi, B. and Lanconelli, E., ‘De Giorgi's theorem for a class of stringly degenerate elliptic equations jour Atti. Accad. Lincei. Rend.’ 72, pp. 273277.Google Scholar
[13]Franchi, B. and Lanconelli, E., ‘Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients’, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4) 10 (1983), 523541.Google Scholar
[14]Gilbarg, D. and Trudinger, N.S., Elliptic Partial Differential Equations of Second Order (Springer-Verlag, Berlin, Heidelberg, New York, 1983).Google Scholar
[15]Galdi, G.P. and Rionoro, S., ‘Weighted energy methods in fluid dynamics and elasticity’, in Lecture Note in Math. 1134 (Springer-Verlag, Berlin, Heidelberg, New York, 1985).Google Scholar
[16]Godement, R., Cours d'algébre (Hermann, Paris, 1963).Google Scholar
[17]Janssen, R., ‘Some variants of Poincaré lemma’, Appl. Anal. 14 (1983), 303315.CrossRefGoogle Scholar
[18]Janssen, R., ‘The Dirichlet problem for second order elliptic operators on unbounded domains’, Appl. Anal. 19 (1985), 201216.Google Scholar
[19]Janssen, R., ‘Elliptic problems on unbounded domains’, SIAM J. Math. Anal. no.6 17 ((1986)), 13701389.Google Scholar
[20]Kohn, J.J. and Nirenberg, L., ‘Degenerate elliptic-parabolic equations of second order’, Comm. Pure Appl. Math. 20 (1967), 797872.Google Scholar
[21]Lions, J.L. and Magenes, E., Non-homogeneous Boundary Value Problems and Applications, Vol 1 (Springer-Verlag, Berlin, Heidelberg, New York, 1972).Google Scholar
[22]Mäulen, J., ‘Lösung der Poissongleichung und harmonische Vectorfelder in unbeschränkten Gebieten’, Math. Methods Appl. Sci. 5 (1983), 303315.CrossRefGoogle Scholar
[23]Mikhailov, V.P., ‘The Dirichlet problem for a second order elliptic equations’, Differential Equations 12 (1976), 13201329.Google Scholar
[24]Oleinik, O.A. and Radkevich, E.V., ‘On local smoothness of generalized and hypoellipticity of second order differential equations’, Russian, Uspehi Mat. Nauk 26 (1971), 265281.Google Scholar
[25]Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer-Verlag, Berlin, Heidelberg, New York, 1983).Google Scholar
[26]Rionero, S. and Salemi, F., ‘On some weighted Poincaré inequalities’, Fisica Math. Suppl. Boll. Un. Mat. Ital. n.1 IV.5 (1985), 251260.Google Scholar
[27]Rukauskas, S., ‘The modified Dirichlet problem for a three dimensional elliptic equation strongly degenerate on the line’, Russian, Litovsk. Math. Sb. 24 (1984), 160165.Google Scholar
[28]Rudin, W., Real and Complex Analysis (MacGraw-Hill, New York, 1974).Google Scholar
[29]Smirnov, V.I., A Course of Higher Mathematics, Vol. 5 (Pergamon Press, Oxford, 1964).Google Scholar
[30]Stampacchia, G., ‘Le probléme de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus’, Ann. Inst. Fourier (Grenoble) 15 (1965), 189258.Google Scholar
[31]Stampacchia, G., ‘Équations élliptiques du second ordre à coefficients discontinus’, in Seninaire de Math. Supérieures 24, Été 1965 (Les Presses de l'Université de Montréal, Montréal, Quebec, 1966).Google Scholar
[32]Trudinger, N.S., ‘Linear elliptic operators with measurable coefficients’, Ann. Sci. Norm. Sup. Pisa 27 (1973).Google Scholar
[33]Xasanov, A., ‘On a mixed problem about the equation sign y|y|muxx + xnuyy = 0’, Izv. Akd. Nauk. UzSSR Ser. Phys. Math. Nauk, no. 2 (1982), 2832.Google Scholar