Published online by Cambridge University Press: 17 April 2009
We discuss purity and pure essentialness of abelian groups in a topos of sheaves on a locale and show that purity is not a local property. We prove that is divisible if and only if it is pure in every extension, and give an example of a category in winch absolutely pure does not imply divisible. We discuss uniform abelian groups and show that each AU uniform in Ab does not imply that A is uniform in
Banaschewski showed that the pure subgroups of are exactly of the type for the different . We show that is essential in if and only if U is dense in , Finally, we characterise as complete boolean algebras the locales for which the only pure and essential subgroup of is .