Article contents
Characterisations for analytic functions of bounded mean oscillation
Published online by Cambridge University Press: 17 April 2009
Abstract
Let α > 0 and let f[α](z) be the αth fractional derivative of an analytic function f on the unit disc D. In this paper we show that f ∈ BMOA if and only if |f[α](z)|2 (l - |z|2)2α−1dA(z) is a Carleson measure and f ∈ VMOA if and only if |f[α](z)|2 (1 − |z|2)2α−1dA(z) is a vanishing Carleson measure, where A denotes the normalised Lebesgue measure on D. Hence a significant extension of familiar characterisations for analytic functions of bounded and vanishing mean oscillation is obtained.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1992
References
- 3
- Cited by