Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T03:07:28.215Z Has data issue: false hasContentIssue false

A characterisation of Riemannian foliations and totally umbilical submanifolds

Published online by Cambridge University Press:  17 April 2009

Ph. Tondeur
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana Il. 61801, United States of America
L. Vanhecke
Affiliation:
Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B B-3001 Leuven, Belgium
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss characterisations of Riemannian foliations, totally geodesic submanifolds, and totally umbilical submanifolds by sharp inequalities. These derive from the same linear algebraic set up, characterising a linear endomorphism which is a multiple of the identity.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Berger, M., Gauduchon, P. and Mazet, E., Le spectre d'une variété riemannienne, Lecture Notes in Mathematics 194 (Springer-Verlag, Berlin, Heidelberg, New York, 1971).CrossRefGoogle Scholar
[2]Chen, B.Y., Geometry of submanifolds, Pure Appl. Math. 22 (Marcel Dekker, New York, 1973).Google Scholar
[3]Chen, B.Y. and Vanhecke, L., ‘Differential geometry of geodesic spheres’, J. Reine Angew. Math. 325 (1981), 2867.Google Scholar
[4]Deshmukh, S., ‘A note on hypersurfaces in a Euclidean space’, Geom. Dedicata 34 (1990), 101103.CrossRefGoogle Scholar
[5]Gray, A., ‘Minimal varieties and almost Hermitian submanifolds’, Michigan Math. J. 12 (1965), 273287.CrossRefGoogle Scholar
[6]Gray, A. and Vanhecke, L., ‘Riemannian geometry as determined by the volumes of small geodesic balls’, Acta Math. 142 (1979), 157198.CrossRefGoogle Scholar
[7]Ogiue, K., ‘Differential geometry of Kaehler submanifolds’, Adv. in Math. 13 (1974), 73114.CrossRefGoogle Scholar
[8]Reinhart, B.L., Differential geometry of foliations, Ergebnisse der Mathematik 99 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).CrossRefGoogle Scholar
[9]Tondeur, Ph., Foliations on Riemannian manifolds, Universitext (Springer-Verlag, Berlin, Heidelberg, New York, 1988).CrossRefGoogle Scholar