Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T09:02:35.803Z Has data issue: false hasContentIssue false

Chaotic group actions

Published online by Cambridge University Press:  17 April 2009

Alla Kolganova
Affiliation:
School of MathematicsFaculty of Science and TechnologyLa Trobe UniversityBundoora Vic 3141Australia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian Ph.D. theses
Copyright
Copyright © Australian Mathematical Society 1997

References

[1]Banks, J., Brooks, J., Cairns, G., Davis, G. and Stacey, P., ‘On Devaney's definition of chaos’, Amer. Math. Monthly 99 (1992), 332334.CrossRefGoogle Scholar
[2]Brin, M.I., Feldman, J. and Katok, A., ‘Bernoulli diffeomorphisms and group extensions of dynamical systems with non-zero characteristic exponents’, Ann. of Math. 113 (1981), 159179.CrossRefGoogle Scholar
[3]Cairns, G., Davis, G., Elton, D., Kolganova, A. and Perversi, P., ‘Chaotic group actions’, Enseign. Math. 41 (1995), 123133.Google Scholar
[4]Cairns, G. and Kolganova, A., ‘Chaotic actions of free groups’, Nonlinearity 41 (1996), 10151021.CrossRefGoogle Scholar
[5]Devaney, R., An introduction to chaotic dynamical systems (Addison-Wesley, California, 1989).Google Scholar