Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T11:33:37.175Z Has data issue: false hasContentIssue false

CENTRALIZERS IN THE SEMIGROUP OF INJECTIVE TRANSFORMATIONS ON AN INFINITE SET

Part of: Semigroups

Published online by Cambridge University Press:  22 June 2010

JANUSZ KONIECZNY*
Affiliation:
Department of Mathematics, University of Mary Washington, Fredericksburg, VA 22401, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For an infinite set X, denote by Γ(X) the semigroup of all injective mappings from X to X. For α∈Γ(X), let C(α)={β∈Γ(X):αβ=βα} be the centralizer of α in Γ(X). For an arbitrary α∈Γ(X), we characterize the elements of C(α) and determine Green’s relations in C(α), including the partial orders of ℒ-, ℛ-, and 𝒥-classes.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Araújo, J. and Konieczny, J., ‘Automorphism groups of centralizers of idempotents’, J. Algebra 269 (2003), 227239.CrossRefGoogle Scholar
[2]Araújo, J. and Konieczny, J., ‘Semigroups of transformations preserving an equivalence relation and a cross-section’, Comm. Algebra 32 (2004), 19171935.CrossRefGoogle Scholar
[3]Araújo, J. and Konieczny, J., ‘General theorems on automorphisms of semigroups and their applications’, J. Aust. Math. Soc. 87 (2009), 117.CrossRefGoogle Scholar
[4]Clifford, A. H. and Preston, G. B., The Algebraic Theory of Semigroups, Mathematical Surveys, 7 (American Mathematical Society, Providence, RI, 1964 (Vol. I) and 1967 (Vol. II)).CrossRefGoogle Scholar
[5]Diestel, R., Graph Theory, 3rd edn (Springer, Heidelberg, 2005).Google Scholar
[6]Howie, J. M., Fundamentals of Semigroup Theory (Oxford University Press, New York, 1995).CrossRefGoogle Scholar
[7]Kemprasit, Y., ‘Some transformation semigroups whose sets of bi-ideals and quasi-ideals coincide’, Comm. Algebra 30 (2002), 44994506.CrossRefGoogle Scholar
[8]Konieczny, J., ‘Semigroups of transformations commuting with injective nilpotents’, Comm. Algebra 32 (2004), 19511969.CrossRefGoogle Scholar
[9]Levi, I., ‘Normal semigroups of one-to-one transformations’, Proc. Edinb. Math. Soc. 34 (1991), 6576.CrossRefGoogle Scholar
[10]Levi, I., ‘Green’s relations on 𝒢X-normal semigroups’, Math. Japon. 39 (1994), 1928.Google Scholar
[11]Levi, I., ‘Group closures of one-to-one transformations’, Bull. Aust. Math. Soc. 64 (2001), 177188.CrossRefGoogle Scholar
[12]Levi, I. and Schein, B. M., ‘The semigroup of one-to-one transformations with finite defects’, Glasg. Math. J. 31 (1989), 243249.CrossRefGoogle Scholar
[13]Levi, I., Schein, B. M., Sullivan, R. P. and Wood, G. R., ‘Automorphisms of Baer–Levi semigroups’, J. London Math. Soc. 28 (1983), 492495.CrossRefGoogle Scholar
[14]Lindsey, D. and Madison, B., ‘The lattice of congruences on a Baer–Levi semigroup’, Semigroup Forum 12 (1976), 6370.CrossRefGoogle Scholar
[15]Scott, W. R., Group Theory (Prentice Hall, Englewood Cliffs, NJ, 1964).Google Scholar
[16]Sullivan, R. P., ‘Automorphisms of injective transformation semigroups’, Studia Sci. Math. Hungar. 15 (1980), 14.Google Scholar
[17]Sullivan, R. P., ‘BQ-semigroups of transformations’, Acta Sci. Math. (Szeged) 75 (2009), 5974.Google Scholar
[18]Šutov, È. G., ‘Semigroups of one-to-one transformations’, Dokl. Akad. Nauk SSSR 140 (1961), 10261028 (in Russian); translated as Soviet Math. Dokl. 2 (1961) 1319–1321.Google Scholar
[19]Suzuki, M., Group Theory I (Springer, New York, 1982).CrossRefGoogle Scholar
[20]Szechtman, F., ‘On the automorphism group of the centralizer of an idempotent in the full transformation monoid’, Semigroup Forum 70 (2005), 238242.CrossRefGoogle Scholar