Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T03:08:11.888Z Has data issue: false hasContentIssue false

Bounds on the limiting distribution of a branching process with varying environment

Published online by Cambridge University Press:  17 April 2009

Owen Dafydd Jones
Affiliation:
School of Mathematics and StatisticsUniversity of SheffieldSheffield S10 2UNUnited Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Upper and lower bounds are obtained for the left tail of the normed limit W0 of a supercritical branching process with varying environment, that is, for P(W0 < x) for small x. Two types of process are dealt with—öttcher type and Schröder type—which between them cover “most” processes with zero extinction probability.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Barlow, M.T., ‘Random walks and diffusions on fractals’, in Proc. Int. Congress Math. Kyoto 1990 (Springer, Tokyo, 1991), pp. 10251035.Google Scholar
[2]Barlow, M.T., ‘Harmonic analysis on fractal spaces’, Séminaire Bourbaki Vol. 1991/92. Astérique No 206, Exp. No 755 5 (1992), 345368.Google Scholar
[3]Barlow, M.T. and Bass, R.F., ‘The construction of Brownian motion on the Sierpinski carpet’, Ann. Inst. H. Poincaré 25 (1989), 225257.Google Scholar
[4]Biggins, J.D. and Bingham, N.H., ‘Near-constancy phenomena in branching processes’, Math. Proc. Cambridge Philos. Soc. 110 (1991), 545558.CrossRefGoogle Scholar
[5]Biggins, J.D. and Bingham, N.H., ‘Large deviations in the supercritical branching process’, Adv. Appl. Prob. 25 (1993), 757772.CrossRefGoogle Scholar
[6]Billingsley, P., Probability and measure (John Wiley and Sons, New York, 1979).Google Scholar
[7]Bingham, N.H., ‘On the limit of a supercritical branching process’, J. Appl. Probab. 25A (1988), 215228.CrossRefGoogle Scholar
[8]D'Souza, J.C. and Biggins, J.D., ‘The supercritical Galton-Watson process in varying environments’, Stochastic Process. Appl. 42 (1992), 3947.CrossRefGoogle Scholar
[9]Dubuc, S., ‘La densité de la loi-limite d'un processus en cascade expansif’, Z. Wahrschein 19 (1971), 281290.CrossRefGoogle Scholar
[10]Dubuc, S., ‘Problèmes relatifs a l'itération des fonctions suggerés par les processus en cascade’, Ann. Inst. Fourier 21 (1971), 171251.CrossRefGoogle Scholar
[11]Fearn, D., ‘Galton-Watson processes with generation dependence’, in Proc. 6th Berkeley Symposium on Math. Stat. and Prob. 4, 1971, pp. 159172.Google Scholar
[12]Goettge, R.T., ‘Limit theorems for the supercritical Galton-Watson process in varying environments’, Math. Biosci. 28 (1975), 171190.CrossRefGoogle Scholar
[13]Hambly, B., ‘On the limiting distribution of a supercritical branching process in a random environment’, J. Appl. Probab. 29 (1992), 499518.CrossRefGoogle Scholar
[14]Hambly, B., ‘On constant tail behaviour for the limiting random variable in a supercritical branching process’, (preprint, 1994).CrossRefGoogle Scholar
[15]Jagers, P., ‘Galton-Watson process in varying environments’, J. Appl. Probab. 11 (1974), 174178.CrossRefGoogle Scholar
[16]Kesten, H. and Stigum, B., ‘A limit theorem for multidimensional Galton-Watson processes’, Ann. Math. Stat. 37 (1966), 12111223.CrossRefGoogle Scholar
[17]MacPhee, I.M. and Schuh, H.J., ‘A Galton-Watson branching process in varying environments with essentially constant means and two rates of growth’, Austral. J. Stat. 25 (1983), 329338.CrossRefGoogle Scholar