Article contents
THE BOCHNER–SCHOENBERG-EBERLEIN PROPERTY OF EXTENSIONS OF BANACH ALGEBRAS AND BANACH MODULES
Published online by Cambridge University Press: 09 July 2021
Abstract
Let A be a Banach algebra and let X be a Banach A-bimodule. We consider the Banach algebra
${A\oplus _1 X}$
, where A is a commutative Banach algebra. We investigate the Bochner–Schoenberg–Eberlein (BSE) property and the BSE module property on
$A\oplus _1 X$
. We show that the module extension Banach algebra
$A\oplus _1 X$
is a BSE Banach algebra if and only if A is a BSE Banach algebra and
$X=\{0\}$
. Furthermore, we consider
$A\oplus _1 X$
as a Banach
$A\oplus _1 X$
-module and characterise the BSE module property on
$A\oplus _1 X$
. We show that
$A\oplus _1 X$
is a BSE Banach
$A\oplus _1 X$
-module if and only if A and X are BSE Banach A-modules.
Keywords
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 105 , Issue 1 , February 2022 , pp. 134 - 145
- Copyright
- © 2021 Australian Mathematical Publishing Association Inc.
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230103145337780-0815:S0004972721000502:S0004972721000502_inline10.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230103145337780-0815:S0004972721000502:S0004972721000502_inline11.png?pub-status=live)
- 3
- Cited by