Hostname: page-component-5cf477f64f-zrtmk Total loading time: 0 Render date: 2025-03-28T01:37:55.062Z Has data issue: false hasContentIssue false

BINARY AND TERNARY CONGRUENCES INVOLVING INTERVALS AND SETS MODULO A PRIME

Published online by Cambridge University Press:  18 March 2025

MOUBARIZ Z. GARAEV
Affiliation:
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089 Morelia, Michoacán, México e-mail: [email protected]
JULIO C. PARDO
Affiliation:
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089 Morelia, Michoacán, México e-mail: [email protected]
IGOR E. SHPARLINSKI*
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Let s be a fixed positive integer constant and let $\varepsilon $ be a fixed small positive number. Then, provided that a prime p is large enough, we prove that, for any set ${\mathcal M}\subseteq \mathbb {F}_p^*$ of size $|{\mathcal M}|= \lfloor { p^{14/29}}\rfloor $ and integer $H=\lfloor {p^{14/29+\varepsilon }}\rfloor $, any integer $\lambda $ can be represented in the form

$$ \begin{align*} \frac{m_1}{x_1^s}+\frac{m_2}{x_2^s}+\frac{m_3}{x_3^s}\equiv \lambda \bmod p \quad\text{with } m_i\in {\mathcal M} \text{ and } 1\leqslant x_i\leqslant H, \, i=1,2,3. \end{align*} $$

When $s=1$, we show that, for almost all primes p, if $|{\mathcal M}|= \lfloor p^{1/2}\rfloor $ and $H=\lfloor p^{1/2}(\log p)^{6+\varepsilon }\rfloor $, then any integer $\lambda $ can be represented in the form

$$ \begin{align*} \frac{m_1}{x_1}+\frac{m_2}{x_2}\equiv \lambda \bmod p \quad\text{with } m_i\in {\mathcal M} \text{ and } 1\leqslant x_i\leqslant H, \, i=1,2. \end{align*} $$

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The third author was partially supported by ARC Grants DP230100530 and DP230100534.

References

Bag, N. and Shparlinski, I. E., ‘Bounds of some double exponential sums’, J. Number Theory 219 (2021), 228236.CrossRefGoogle Scholar
Banks, W. and Shparlinski, I. E., ‘Congruences with intervals and arbitrary sets’, Arch. Math. (Basel) 114 (2020), 527539.CrossRefGoogle Scholar
Garaev, M. Z., ‘Character sums in short intervals and the multiplication table modulo a prime’, Monatsh. Math. 148 (2006), 127138.CrossRefGoogle Scholar
Garaev, M. Z. and Garcia, V. C., ‘The equation ${x}_1{x}_2={x}_3{x}_4+\lambda$ in fields of prime order and applications’, J. Number Theory 128 (2008), 25202537.CrossRefGoogle Scholar
Garaev, M. Z. and Karatsuba, A. A., ‘The representation of residue classes by products of small integers’, Proc. Edinb. Math. Soc. (2) 50 (2007), 363375.CrossRefGoogle Scholar
Garaev, M. Z. and Shparlinski, I. E., ‘On some congruences and exponential sums’, Finite Fields Appl. 98 (2024), Article no. 102451, 17 pages.CrossRefGoogle Scholar
Iwaniec, H. and Kowalski, E., Analytic Number Theory (American Mathematical Society, Providence, RI, 2004).Google Scholar
Montgomery, H. L. and Vaughan, R. C., Multiplicative Number Theory I: Classical Theory (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
Shparlinski, I. E., ‘Modular hyperbolas’, Jpn. J. Math. 7 (2012), 235294.CrossRefGoogle Scholar
Walfisz, A., Weylsche Exponentialsummen in der neueren Zahlentheorie (B.G. Teubner, Leipzig, 1963).Google Scholar