Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-18T13:33:14.582Z Has data issue: false hasContentIssue false

BETTER BOUNDS IN CHEN’S INEQUALITIES FOR THE EULER CONSTANT

Published online by Cambridge University Press:  02 April 2015

JENICA CRINGANU*
Affiliation:
‘Dunarea de Jos’ University of Galati, str. Domneasca, no. 111, Galati, Romania email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we improve the inequalities obtained by Chen in 2009 for the Euler–Mascheroni constant.

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Alzer, H., ‘Inequalities for the gamma and polygamma functions’, Abh. Math. Semin. Univ. Hamb. 68 (1998), 363372.CrossRefGoogle Scholar
Anderson, G. D., Barnard, R. W., Richards, K. C., Vamanamurthy, M. K. and Vuorinen, M., ‘Inequalities for zero-balanced hypergeometric functions’, Trans. Amer. Math. Soc. 345 (1995), 17131723.CrossRefGoogle Scholar
Chen, C.-P., ‘The best bounds in Vernescu’s inequalities for the Euler’s constant’, RGMIA Res. Rep. Coll. 12 (2009), Article ID 11, available on-line at http://ajmaa.org/RGMIA/v12n3.php.Google Scholar
Chen, C.-P., ‘Inequalities for the Euler–Mascheroni constant’, Appl. Math. Lett. 23 (2010), 161164.CrossRefGoogle Scholar
DeTemple, D. W., ‘A quicker convergence to Euler’s constant’, Amer. Math. Monthly 100(5) (1993), 468470.CrossRefGoogle Scholar
Mortici, C. and Vernescu, A., ‘An improvement of the convergence speed of the sequence (𝛾n)n≥1 converging to Euler’s constant’, An. Ştiinţ. Univ. ‘Ovidius’ Constanţa 13(1) (2005), 97100.Google Scholar
Mortici, C. and Vernescu, A., ‘Some new facts in discrete asymptotic analysis’, Math. Balkanica (N.S.) 21(Fasc. 3–4) (2007), 301308.Google Scholar
Tims, S. R. and Tyrrel, J. A., ‘Approximate evaluation of Euler’s constant’, Gaz. Math. 55 (1971), 6567.CrossRefGoogle Scholar
Tóth, L., ‘Problem E3432’, Amer. Math. Monthly 98(3) (1991), 264.Google Scholar
Vernescu, A., ‘A new accelerate convergence to the constant of Euler’, Gaz. Math. seria A (1999), 273278.Google Scholar
Young, R. M., ‘Euler’s constant’, Gaz. Math. 75(472) (1991), 187190.CrossRefGoogle Scholar