Article contents
AUTOMATIC CONTINUITY OF n-HOMOMORPHISMS BETWEEN TOPOLOGICAL ALGEBRAS
Published online by Cambridge University Press: 01 April 2011
Abstract
A map θ:A→B between algebras A and B is called n-multiplicative if θ(a1a2⋯an)=θ(a1) θ(a2)⋯θ(an) for all elements a1,a2,…,an∈A. If θ is also linear then it is called an n-homomorphism. This notion is an extension of a homomorphism. We obtain some results on automatic continuity of n-homomorphisms between certain topological algebras, as well as Banach algebras. The main results are extensions of Johnson’s theorem to surjective n-homomorphisms on topological algebras, a theorem due to C. E. Rickart in 1950 to dense range n-homomorphisms on topological algebras and two theorems due to E. Park and J. Trout in 2009 to * -preserving n-homomorphisms on lmc * -algebras.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Publishing Association Inc. 2011
References
- 3
- Cited by