Published online by Cambridge University Press: 17 April 2009
Let X and Y be metric spaces and C(X, Y) be the space of all continuous functions from X to Y. If X is a locally connected space, the compact-open topology on C(X, Y) is weaker than the Attouch-Wets topology on C(X, Y). The result is applied on the space of continuous linear functions. Let X be a locally convex topological linear space metrisable with an invariant metric and X* be a continuous dual. X is normable if and only if the strong topology on X* and the Attouch-Wets topology coincide.