Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T08:50:51.587Z Has data issue: false hasContentIssue false

a-T-menability of groups acting on trees

Published online by Cambridge University Press:  17 April 2009

Światoslaw R. Gal
Affiliation:
Department of Mathematics, Wroclaw University, Pl. Grunwaldzki 2/4, 50-384 Wroclaw, Polandhttp://www.math.uni.wroc.plsgal/
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present some partial results concerning a-T-menability of groups acting on trees. Various known results are given uniform proofs.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Béguin, C. and Ceccherini-Silberstein, T., ‘Formes faibles de moyenabilité pour les gruupes à un relateur’, Bull. Belg. Math. Soc. Simon Stevin 1 (2000), 135148.Google Scholar
[2]Cherix, P-A., Cowling, M., Jolissant, P., Julg, P. and Valette, A., Groups with the Haagerup property (Gromov's a-T-menability) (Birkhäuser Verlag, Basel, 2001).Google Scholar
[3]Gal, S.R. and Januszkiewicz, T., ‘New a-T-menable HNN-extensions’, J. Lie Theory 13 (2003), 383385.Google Scholar
[4]Haagerup, U., ‘An example of non-nuclear C*-algebra which has the metric approximation property’, Invent. Math. 50 (1979), 279293.CrossRefGoogle Scholar
[5]de la Harpe, P. and Valette, A., ‘La properiété (T) de Kazhdan pour les groupes localement compacts’, Astérisque 157 (1989), 158.Google Scholar
[6]Serre, J.P., Trees (Springer-Verlag, Berlin, New York, 1980).CrossRefGoogle Scholar