Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T20:43:33.245Z Has data issue: false hasContentIssue false

Asymptotic analysis of partition identities

Published online by Cambridge University Press:  17 April 2009

Dennis Acreman
Affiliation:
School of Mathematics, University of New South Wales, PO Box 1, Kensington, New South Wales 2033, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD theses
Copyright
Copyright © Australian Mathematical Society 1983

References

[1] Andrews, G.E., “An incredible formula of Ramanujan”, Austral. Math. Soc. Gazette 6 (1979), 8089.Google Scholar
[2] Hirschhorn, M.D., “Two further Ramanujan pairs”, J. Austral. Math. Soc. Ser. A 30 (1980/1981), 14.CrossRefGoogle Scholar
[3] Loxton, J.H., “Special values of the dilogarithm function”, Acta Arith. (to appear).Google Scholar
[4] Richmond, B. and Szekeres, G., “Some formulae related to dilogarithms, the zeta function and the Andrews-Gordon identities”, J. Austral. Math. Soc. Ser. A 31 (1981), 362373.Google Scholar
[5] Slater, L.J., “Further identities of the Rogers-Ramanujan type”, Proc. London Math. Soc. (2) 54 (1951), 147167.Google Scholar
[6] Szekeres, G., “Some asymptotic formulae in the theory of partitions (II)”, Quart. J. Math. Oxford (2) 4 (1953), 96111.CrossRefGoogle Scholar
[7] Verma, A. and Jain, V.K., “Transformations between basic hypergeometric series of different bases and identities of Rogers-Ramanujan type”, J. Math. Anal. Appl. 76 (1980), 230269.CrossRefGoogle Scholar