Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T05:47:37.173Z Has data issue: false hasContentIssue false

ARITHMETIC PROPERTIES OF COEFFICIENTS OF THE MOCK THETA FUNCTION $B(q)$

Published online by Cambridge University Press:  21 November 2019

RENRONG MAO*
Affiliation:
Department of Mathematics,Soochow University, SuZhou 215006, PR China email [email protected]

Abstract

We investigate the arithmetic properties of the second-order mock theta function $B(q)$ and establish two identities for the coefficients of this function along arithmetic progressions. As applications, we prove several congruences for these coefficients.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author was partially supported by the National Natural Science Foundation of China (Grant No. 11971341).

References

Andrews, G. E., ‘Mordell integrals and Ramanujan’s “lost” notebook’, in: Analytic Number Theory, Lecture Notes in Mathematics, 899 (Springer, Berlin, 1981), 1048.CrossRefGoogle Scholar
Andrews, G. E., ‘The fifth and seventh order mock theta functions’, Trans. Am. Math. Soc. 293 (1986), 113134.10.1090/S0002-9947-1986-0814916-2CrossRefGoogle Scholar
Andrews, G. E., The Theory of Partitions (Cambridge University Press, Cambridge, 1998).Google Scholar
Andrews, G. E., Dixit, A. and Yee, A. J., ‘Partitions associated with Ramanujan/Watson mock theta functions 𝜔(q), 𝜈(q) and 𝜑(q)’, Res. Number Theory (2015), 119.Google Scholar
Andrews, G. E. and Hickerson, D., ‘Ramanujan’s “lost” notebook VII: The sixth order mock theta functions’, Adv. Math. 89 (1991), 60105.CrossRefGoogle Scholar
Andrews, G. E., Passary, D., Sellers, J. A. and Yee, A. J., ‘Congruences related to the Ramanujan/Watson mock theta functions 𝜔(q) and 𝜈(q)’, Ramanujan J. 43(2) (2016), 347357.CrossRefGoogle Scholar
Berndt, B. C., Ramanujan’s Notebooks, Part III (Springer, New York, 1991).CrossRefGoogle Scholar
Berndt, B. C., Chan, H. H., Chan, S. H. and Liaw, W. C., ‘Cranks and dissections in Ramanujan’s lost notebook’, J. Combin. Theory Ser. A 109(1) (2005), 91120.CrossRefGoogle Scholar
Berndt, B. C. and Chan, S. H., ‘Sixth order mock theta functions’, Adv. Math. 216(2) (2007), 771786.CrossRefGoogle Scholar
Bringmann, K. and Ono, K., ‘The f (q) mock theta function conjecture and partition ranks’, Invent. Math. 165 (2006), 243266.CrossRefGoogle Scholar
Bringmann, K. and Ono, K., ‘Lifting elliptic cusp forms to Maass forms with an application to partitions’, Proc. Natl Acad. Sci. USA 104 (2007), 37253731.CrossRefGoogle Scholar
Bringmann, K. and Ono, K., ‘Dyson’s ranks and Maass forms’, Ann. of Math. 171 (2010), 419449.CrossRefGoogle Scholar
Chan, S. H., ‘Generalized Lambert series identities’, Proc. Lond. Math. Soc. (3) 91(3) (2005), 598622.CrossRefGoogle Scholar
Chan, S. H. and Mao, R., ‘Two congruences for Appell–Lerch sums’, Int. J. Number Theory 8(1) (2012), 111123.10.1142/S1793042112500066CrossRefGoogle Scholar
Chu, W., ‘Theta function identities and Ramanujan’s congruences on the partition function’, Q. J. Math. 56(4) (2005), 491506.CrossRefGoogle Scholar
Garthwaite, S., ‘The coefficients of the 𝜔(q) mock theta function’, Int. J. Number Theory 4(6) (2008), 10271042.CrossRefGoogle Scholar
Gordon, B. and McIntosh, R. J., ‘A survey of classical mock theta functions’, in: Partitions, q-series, and Modular Forms, Developments in Mathematics, 23 (Springer, New York, 2012), 95144.10.1007/978-1-4614-0028-8_9CrossRefGoogle Scholar
Hickerson, D., ‘A proof of the mock theta conjectures’, Invent. Math. 94(3) (1988), 639660.10.1007/BF01394279CrossRefGoogle Scholar
Hickerson, D., ‘On the seventh order mock theta functions’, Invent. Math. 94(3) (1988), 661677.CrossRefGoogle Scholar
Mao, R., ‘Two identities on the mock theta function V 0(q)’, J. Math. Anal. Appl. 479(1) (2019), 122134.CrossRefGoogle Scholar
Ono, K., ‘Unearthing the visions of a master: Harmonic Maass forms and number theory’, in: Current Developments in Mathematics, 2008 (International Press, Somerville, MA, 2009), 347454.Google Scholar
Qu, Y. K., Wang, Y. J. and Yao, O. X. M., ‘Generalizations of some conjectures of Chan on congruences for Appell–Lerch sums’, J. Math. Anal. Appl. 460(1) (2018), 232238.CrossRefGoogle Scholar
Ramanujan, S., Collected Papers (Cambridge University Press, Cambridge, 1927; reprinted by Chelsea, New York, 1962; reprinted by the American Mathematical Society, Providence, RI, 2000).Google Scholar
Waldherr, M., ‘On certain explicit congruences for mock theta functions’, Proc. Am. Math. Soc. 139 (2011), 865879.CrossRefGoogle Scholar
Wang, L., ‘New congruences for partitions related to mock theta functions’, J. Number Theory 175 (2017), 5165.CrossRefGoogle Scholar
Zagier, D., ‘Ramanujan’s mock theta functions and their applications (after Zwegers and Ono–Bringmann)’, Séminaire Bourbaki, 2007/2008, Exp. No. 986 (Astérisque, 326, 2009), 143–164.Google Scholar
Zwegers, S., Mock Theta Functions, PhD Thesis (Universiteit Utrecht, 2002).Google Scholar