Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T02:01:25.269Z Has data issue: false hasContentIssue false

APPLICATIONS OF SANDPILE ALGORITHMS TO MODELLING EDGE LOCALISED MODE PHENOMENOLOGY IN MAGNETICALLY CONFINED FUSION PLASMAS

Published online by Cambridge University Press:  22 June 2021

CRAIG BOWIE*
Affiliation:
Mathematical Sciences Institute, Australian National University, Canberra, ACT 2601, Australia
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

MSC classification

Type
Abstracts of Australasian PhD Theses
Copyright
© 2021 Australian Mathematical Publishing Association Inc.

Footnotes

Thesis submitted to the Australian National University in June 2020; degree approved on 11 December 2020; supervisors Matthew Hole, Robert Dewar and Richard Dendy.

References

Bowie, C. A., Dendy, R. O. and Hole, M. J., ‘Delay time embedding of mass loss avalanches in a fusion plasma-oriented sandpile model’, Phys. Plasmas 23 (2016), Article ID 100703.CrossRefGoogle Scholar
Bowie, C. A. and Hole, M. J., ‘Pedestals and feedback in fusion-plasma relevant sandpile models’, Phys. Plasmas 25 (2018), Article ID 012511.CrossRefGoogle Scholar
Bowie, C. A. and Hole, M. J., ‘Behaviour of multiple discrete waiting times between mass loss events in a sandpile model’, Plasma Res. Express 2 (2020), Article ID 035003.CrossRefGoogle Scholar
Bowie, C. A. and Hole, M. J., ‘Sandpile modelling of dual location fuelling in fusion plasmas’, Plasma Phys. Control. Fusion 62 (2020), Article ID 055006.CrossRefGoogle Scholar
Bowie, C. A. and Hole, M. J., ‘Sandpile modelling of pellet pacing in fusion plasmas’, Phys. Rev. E 101 (2020), Article ID 013207.CrossRefGoogle Scholar
Chapman, S. C., ‘Inverse cascade avalanche model with limit cycle exhibiting period doubling, intermittency, and self-similarity’, Phys. Rev. E 62 (2000), Article ID 1905.CrossRefGoogle ScholarPubMed