Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T21:47:24.832Z Has data issue: false hasContentIssue false

Another proof of the Browder–Göhde–Kirk theorem via ordering argument

Published online by Cambridge University Press:  17 April 2009

Jacek Jachymski
Affiliation:
Institute of Mathematics, Technical University of Lódź, Żwirki 36, 90–924 Lódź, Poland e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using the Zermelo Principle, we establish a common fixed point theorem for two progressive mappings on a partially ordered set. This result yields the Browder–Göhde–Kirk fixed point theorem for nonexpansive mappings.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Bourbaki, N., ‘Sur le théorème de Zorn’, Arch. Math. 2 (19491950), 434437.CrossRefGoogle Scholar
[2]Dunford, N. and Schwartz, J., Linear operators I: general theory (Wiley Interscience, New York, 1957).Google Scholar
[3]Fuchssteiner, B., ‘Iterations and fixpoints’, Pacific J. Math. 68 (1977), 7380.CrossRefGoogle Scholar
[4]Goebel, K. and Kirk, W.A., Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics 28 (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
[5]Kirk, W.A., ‘A fixed point theorem for mappings which do not increase distance’, Amer. Math. Monthly 72 (1965), 10041006.CrossRefGoogle Scholar
[6]Kirk, W.A., ‘Nonexpansive mappings in metric and Banach spaces’, Rend. Sem. Mat. Fis. Milano 51 (1981), 133144.CrossRefGoogle Scholar
[7]Zermelo, E., ‘Neuer Beweis für die Möglichkeit einer Wohlordnung’, Math. Ann. 65 (1908), 107128.CrossRefGoogle Scholar