Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T16:52:55.925Z Has data issue: false hasContentIssue false

An oscillation theorem for a superlinear functional differential equation with general deviating arguments

Published online by Cambridge University Press:  17 April 2009

Yuichi Kitamura
Affiliation:
Department of Nathematics, Faculty of Education, Nagasaki University, Nagasaki, Japan;
Takaŝsi Kusano
Affiliation:
Department of Mathematics, Faculty of Science, Hiroshima University, Hiroshima, Japan.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An oscillation criterion is established for a class of functional differential equations including the generalized Emden-Fowler equation

as a special case. The deviating arguments involved may be retarded or advanced or otherwise. The result extends and improves known fundamental oscillation criteria for superlinear differential equations with retarded arguments.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1978

References

[1]НиγУРадзе, И.Τ. [Kiguradze, I.T.], “Ο НΟлеблеΜΟСΤи РещеНий УРаΒНеНиЯ ” [on the oscillation of solutions of the equation ], Mat. Sb. (N.S.. 65 107) (1964), 172187.Google Scholar
[2]Kitamura, Yuichi, “On nonoscillatory solutions of functional differential equations with a general deviating argument”, Hiroshima Math. J. 8 (1978), 4962.Google Scholar
[3]Kusano, Takaši and Onose, Hiroshi, “Oscillation of solutions of nonlinear differential delay equations of arbitrary order”, Hiroshima Math. J. 2 (1972), 113.Google Scholar
[4]Kusano, Takaši and Onose, Hiroshi, “Oscillation theorems for delay equations of arbitrary order”, Hiroshima Math. J. 2 (1972), 263270.Google Scholar
[5]Kusano, T. and Onose, H., “Oscillations of functional differential equations with retarded argument”, J. Differential Equations 15 (1974), 269277.CrossRefGoogle Scholar
[6]Kusano, Takaši and Onose, Hiroshi, “Nonlinear oscillation of second order functional differential equations with advanced argument”, J. Math. Soc. Japan. 29 (1977), 541559.CrossRefGoogle Scholar
[7]ΜиΤРΟ⊓ΟльСНй, ЮА., щеΒелΟ, Β.Н. [ Mitropol'skiĭ, Ju.A., Ševeloj, V.N.], “O РаЗΒиΤии ΤеΟРии ΟСцилллции РещеНий диφφеРеНциальНыХ УРаβНеНий с За⊓аздыβΒаЮщИΜ аРΓуΜеНΤΟΜ” [On the development of the theory of oscillation of solutions of differential equations with retarded argument], Ukrain. Mat. ĭ. 29 (1977), 313323.Google Scholar
[8]щееβееьΟ, ь.Н., ьаРеХ, Н.ь [ševelo, V.N., Vareh, N.V.], “O НΟлеблеΜΟсΤи РещеНии лиНеиНыХ диφφеРеНциальНыХ УРаβНеНий ΒыщиХ ⊓ΟАдНΟь с за⊓аздыβающиΜ аРΓуΜеНΤΟΜ” [On the oscillation of solutions of higher order linear differential equations with retarded argument], Ukrain. Mat. Ž. 24 (1972), 513520.Google Scholar
[9]щеβелΟ, ь.Н., ьаРеХ, Н.ь. [Ševelo, V.N., Vareh, N.V.], “O НеΚΟΤΟРыХ сьΟйсΤьаХ РащHий диφφеРеНциальНыХ уРаβНеНий с за⊡азыΜьаНΜеΜ” [On some properties of solutions of differential equations with delay], Ukrain. Mat. Z. 24 (1972), 807813.Google Scholar
[7]Sficas, V.G. and Staikos, V.A., “Oscillations of retarded differential equations”, Proa. Cambridge Philos. Soc. 75 (1974), 95101.CrossRefGoogle Scholar