Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T03:48:56.287Z Has data issue: false hasContentIssue false

An (n + 1)– fold Marcinkiewicz multiplier theorem on the Heisenberg group

Published online by Cambridge University Press:  17 April 2009

A. J. Fraser
Affiliation:
School of Mathematics, University of New South Wales, Sydney NSW 2052, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a Marcinkiewicz-type multiplier theorem on the Heisenberg group: for 1 < p < ∞, we establish the boundedness on Lp (ℍn) of spectral multipliers m (ℒ1,…,ℒn, iT) of the n partial sub-Laplacians ℒ1,…,ℒn and iT, where m satisfies an (n + l)-fold Marcinkiewicz-type condition. We also establish regularity and cancellation conditions which the convolution kernels of these Marcinkiewicz multipliers m (ℒ1,…,ℒn,iT) satisfy.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Chang, S. Y. and Fefferman, R., ‘Some recent developments in Fourier analysis and Hp theory on product domains’, Bull. Amer. Math. Soc. 12 (1985), 143.CrossRefGoogle Scholar
[2]Coifman, R. R. and Weiss, G., Transference methods in analysis,CBMS Reg. Conf. Series in Math. 31 (Amer. Math. Soc., Providence, R. I., 1977).CrossRefGoogle Scholar
[3]Folland, G. and Stein, E. M., Hardy spaces on homogeneous groups (Princeton Univ. Press, Princeton, N.J., 1982).Google Scholar
[4]Geller, D., ‘Fourier analysis on the Heisenberg group’, Proceedings National Academy Science USA 74 (1977), 13281331.CrossRefGoogle ScholarPubMed
[5]Journé, J. L., ‘Calderón-Zygmund operators on product spaces’, Rev. Mat. Iberoamericana 1 (1985), 5592.CrossRefGoogle Scholar
[6]Müller, D., Ricci, F. and Stein, E. M., ‘Marcinkiewicz multipliers and two-parameter structures on Heisenberg groups, I’, Invent. Math. 119 (1995), 199233.CrossRefGoogle Scholar
[7]Müller, D., Ricci, F. and Stein, E. M., ‘Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, II’, Math. Z. 221 (1996), 267291.Google Scholar
[8]Stein, E. M., Singular integrals and differentiability properties of functions (Princeton Univ. Press, Princeton, N.J., 1970).Google Scholar
[9]Stein, E. M., Harmonic analysis (Princeton Univ. Press, Princeton, N.J., 1993).Google Scholar
[10]Veneruso, A., ‘Marcinkiewicz multipliers on the Heisenberg group’, Bull. Austral. Math. Soc. 61 (2000), 5368.CrossRefGoogle Scholar