Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T03:40:31.605Z Has data issue: false hasContentIssue false

An extension of the essential supremum concept with applications to normal integrands and multifunctions

Published online by Cambridge University Press:  17 April 2009

E.J. Balder
Affiliation:
Mathematical Institute, University of Utrecht, Budapestlaan 6, PO Box 80.010, 3508 TA Utrecht, The Netherlands.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let (T, T, μ) be a σ-finite measure space and X a Suslin space. Let A be a class of normal integrands on T × X. We discuss the existence of an essential supremum of A, namely, a normal integrand l with

where A0 is a countable subclass of A, and, for each α ∈ A,

In this way we obtain an extension of the classical essential supremum concept. The applications include a result on measurable selectors of nonmeasurable multifunctions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1983

References

[1]Artstein, Zvi, “Weak convergence of set-valued functions and control”, SIAM J. Control 13 (1975), 865878.CrossRefGoogle Scholar
[2]Balder, E.J., “An extension of duality-stability relations to non-convex optimization problems”, SIAM J. Control Optim. 15 (1977), 329343.CrossRefGoogle Scholar
[3]Balder, E.J., “Lower semicontinuity of integral functionals with non-convex integrands by relaxation-compactification”, SIAM J. Control Optim. 19 (1981), 533542.CrossRefGoogle Scholar
[4]Berliocchi, H. and Lasry, J.-M., “Intégrandes normales et mesures paramétrées en calcul des variations”, Bull. Soc. Math. France 101 (1973), 129184.CrossRefGoogle Scholar
[5]Castaing, C., Valadier, M., Convex analysis and measurable multi-functions (Lecture Notes in Mathematics, 580. Springer-Verlag, Berlin, Heidelberg, New York, 1977).CrossRefGoogle Scholar
[6]Dolecki, Szymon and Kurcyusz, Stanis∤aw, “On φ-convexity in extremal problems”, SIAM J. Control Optim. 16 (1978), 277300.CrossRefGoogle Scholar
[7]Elster, Karl-Heinz und Nehse, Reinhard, “Zur Theorie der Polarfunktionale”, Math. Operationsforsch. Statist. 5 (1974), 321.CrossRefGoogle Scholar
[8]Hausdorff, Felix, Mengenlehre (Dover, New York, 1944).Google Scholar
[9]Himmelberg, C.J., “Measurable relations”, Fund. Math. 87 (1975), 5372.CrossRefGoogle Scholar
[10]Klee, Victor and Olech, Czes∤aw, “Characterizations of a class of convex sets”, Math. Scand. 20 (1967), 290296.Google Scholar
[11]Laurent, Pierre-Jean, Approximation et optimisation (Collection Enseignement des Sciences, 13. Hermann, Paris, 1972).Google Scholar
[12]Lindberg, P.O., “A generalization of Fenchel conjugation giving generalized Lagrangians and symmetric nonconvex duality”, Survey of mathematical programming, Vol. 1, 249267 (Proc. Ninth Internat. Math. Programming Sympos., Budapest, 1976. North-Holland, Amsterdam, 1979).Google Scholar
[13]Moreau, Jean Jacques, “Inf-convolution, sous-additivité, convexité des fonctions numériques”, J. Math. Pures Appl. (9) 49 (1970), 109154.Google Scholar
[14]Neveu, Jacques, Bases mathématiques du calcul des probabilités (Masson, Paris, 1964).Google Scholar
[15]Valadier, Michel, “Multi-applications mesurables à valeurs convexes compactes”, J. Math. Pures Appl. (9) 50 (1971), 265297.Google Scholar