Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T13:13:15.287Z Has data issue: false hasContentIssue false

AN ARBITRARY INTERSECTION OF Lp-SPACES

Published online by Cambridge University Press:  16 February 2012

F. ABTAHI*
Affiliation:
Department of Mathematics, University of Isfahan, Isfahan, Iran (email: [email protected])
H. G. AMINI
Affiliation:
Department of Mathematics, University of Isfahan, Isfahan, Iran (email: [email protected])
H. A. LOTFI
Affiliation:
Department of Mathematics, University of Isfahan, Isfahan, Iran (email: [email protected])
A. REJALI
Affiliation:
Department of Mathematics, University of Isfahan, Isfahan, Iran (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a locally compact group G and an arbitrary subset J of [1,], we introduce ILJ(G) as a subspace of ⋂ pJLp(G) with some norm to make it a Banach space. Then, for some special choice of J, we investigate some topological and algebraic properties of ILJ(G) as a Banach algebra under a convolution product.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

References

[1]Abtahi, F., Isfahani, R. N. and Rejali, A., ‘On the l p-conjecture for locally compact groups’, Arch. Math. (Basel) 89 (2007), 237242.Google Scholar
[2]Abtahi, F., Isfahani, R. N. and Rejali, A., ‘On the weighted L p-space on a discrete group’, Publ. Math. Debrecen 75(3–4) (2009), 365374.CrossRefGoogle Scholar
[3]Abtahi, F., Isfahani, R. N. and Rejali, A., ‘On the weighted L p-conjecture for locally compact groups’, Period. Math. Hungar. 60(1) (2010), 111.CrossRefGoogle Scholar
[4]Arens, R., ‘The space L ω and convex topological rings’, Bull. Amer. Math. Soc. (N.S.) 7 (1946), 931935.Google Scholar
[5]Bell, W. C., ‘On the normability of the intersection of L p-spaces’, Proc. Amer. Math. Soc. 66 (1977), 299304.Google Scholar
[6]Bonsall, F. F. and Duncan, J., Complete Normed Algebras (Springer, New York–Heidelberg, 1973).CrossRefGoogle Scholar
[7]Burnham, J. T., ‘Closed ideals in subalgebras of Banach algebras I’, Proc. Amer. Math. Soc. 32 (1972), 551555.Google Scholar
[8]Dales, H. G. and Lau, A. T. M., ‘The second duals of Beurling algebras’, Mem. Amer. Math. Soc. 177(836) (2005), vi+191 pp.Google Scholar
[9]Davis, H. W., Murray, F. J. and Weber, J. K., ‘Families of L p-spaces with inductive and projective topologies’, Pacific J. Math. 34 (1970), 619638.Google Scholar
[10]Davis, H. W., Murray, F. J. and Weber, J. K., ‘Inductive and projective limits of L p-spaces’, Port. Math. 31 (1972), 2129.Google Scholar
[11]Despic, M. and Ghahramani, F., ‘Weak amenability of group algebras of locally compact groups’, Canad. Math. Bull. 37 (1994), 165167.CrossRefGoogle Scholar
[12]Dilworth, S. J., ‘Interpolation of intersections of L p-spaces’, Arch. Math. (Basel) 50 (1988), 5155.CrossRefGoogle Scholar
[13]Duncan, J. and Hosseiniun, S. A., ‘The second dual of a Banach algebra’, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309325.CrossRefGoogle Scholar
[14]Forrest, B. E., Spronk, N. and Wood, P., ‘Operator Segal algebras in Fourier algebras’, Stud. Math. 179(3) (2007), 277295.Google Scholar
[15]Ghahramani, F., ‘Weighted group algebra as an ideal in its second dual space’, Proc. Amer. Math. Soc. 90 (1984), 7176.Google Scholar
[16]Ghahramani, F. and Lau, A. T.-M., ‘Weak amenability of certain classes of Banach algebras without bounded approximate identities’, Math. Proc. Cambridge Philos. Soc. 133 (2002), 357371.Google Scholar
[17]Ghahramani, F. and Lau, A. T. M., ‘Approximate weak amenability, derivations and Arens regularity of Segal algebras’, Stud. Math. 169 (2005), 189205.CrossRefGoogle Scholar
[18]Hewitt, E. and Ross, K. A., Abstract Harmonic Analysis, 2nd edn, Vol. I (Springer, New York, 1970).Google Scholar
[19]Hewitt, E. and Stromgerg, K., Real and Abstract Analysis (Springer, New York–Heidelberg–Berlin, 1965).Google Scholar
[20]Johnson, B. E., ‘Cohomology in Banach algebras’, Mem. Amer. Math. Soc. 127 (1972).Google Scholar
[21]Johnson, B. E., ‘Weak amenability of group algebras’, Bull. Lond. Math. Soc. 23 (1991), 281284.CrossRefGoogle Scholar
[22]Lau, A. T. M. and Losert, V., ‘On the second conjugate algebra of L 1(G) of a locally compact group’, J. Lond. Math. Soc. (2) 37(3) (1988), 464470.Google Scholar
[23]Leader, S., ‘The theory of L p-spaces for finitely additive set functions’, Ann. of Math. (2) 58 (1953), 528543.Google Scholar
[24]Reiter, H., L 1-Algebras and Segal Algebras (Springer, Berlin–Heidelberg–New York, 1971).Google Scholar
[25]Saeki, S., ‘The L p-conjecture and Young’s inequality’, Illinois J. Math. 34 (1990), 615627.CrossRefGoogle Scholar