Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T23:30:40.770Z Has data issue: false hasContentIssue false

An Analogue of Beurling's Theorem for the Heisenberg Group

Published online by Cambridge University Press:  17 April 2009

Jizheng Huang
Affiliation:
LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China, e-mail: [email protected]; [email protected]
Heping Liu
Affiliation:
LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China, e-mail: [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we prove an analogue of Beurling's theorem on the Heisenberg group. Then we derive some other versions of the uncertainty principle.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Astengo, F., Cowling, M., Di Blasio, B. and Sundari, M., ‘Hardy's uncertainty pronciple on some Lie groups’, J. London Math. Soc. 62 (2000), 461472.CrossRefGoogle Scholar
[2]Baclouti, A. and Ben, S. N., ‘The LP - Lq version of Hardy's theorem on nilpotent Lie groups’, Forum Math. 18 (2006), 245262.Google Scholar
[3]Bagchi, S.C. and Ray, S.K., ‘Uncertainty principles like Hardy's theorem on some Lie groups’, J. Aust. Math. Soc. Ser. A 65 (1999), 289302.CrossRefGoogle Scholar
[4]Bonami, A., Demange, B. and Jaming, P., ‘Hermite functions and uncertainty principles for the Fourier and the widowed Fourier transform’, Rev. Mat. Iberoamericana 19 (2003), 2355.CrossRefGoogle Scholar
[5]Folland, G.B., Harmoic analysis in phase space, Ann. Math. Stud. 122 (Princeton University Press, Princeton, NJ, 1989).Google Scholar
[6]Folland, G.B. and Sitaram, A., ‘The uncertainty principle: a mathematical survey’, J. Fourier Anal. Appl. 3 (1997), 207238.CrossRefGoogle Scholar
[7]Hömander, L., ‘A uniqueness theorem of Beurling for Fourier transform pairs’, Ark. Mat. 29 (1991), 237240.CrossRefGoogle Scholar
[8]Kaniuth, E. and Kumar, A., ‘Hardy's theorem for simply connected nilpotent Lie groups’, Math. Proc. Cambridge Philos. Soc. 131 (2001), 487494.CrossRefGoogle Scholar
[9]Kumar, A. and Bhatta, C.R., ‘An uncertainty principle like Hardy's theorem for nilpotent Lie groups’, J. Aust. Math. Soc. 77 (2004), 4753.CrossRefGoogle Scholar
[10]Ray, S.K., Uncertainty principles on two step nilpotent Lie groups, Proc. Ind. Acad. Sci. Math. Soc. 111, pp. 293318.CrossRefGoogle Scholar
[11]Sarkar, R.P. and Sengupta, J., ‘Beurling's theorem and characterization of heat kernel for Riemannian symmtric spaces of noncompact type’, arXiv: math. FA/0502514, V1, (2005).Google Scholar
[12]Sarkar, R.P. and Thangavelu, S., ‘On theorems of Beurling and Hardy for the Euclidean Motion group’, Tohoku. Math. J. 57 (2005), 335351.CrossRefGoogle Scholar
[13]Sitaram, A., Sundari, M. and Thangavelu, S., ‘Uncertainty principles on certain Lie groups’, Proc. Indian Acad. Sci. Math. Sci. 105 (1995), 135151.CrossRefGoogle Scholar
[14]Thangavelu, S., Lectures on Hermite and Laguerre expansions, Math. Notes 42 (Princeton University Press, Princeton, NJ, 1993).CrossRefGoogle Scholar
[15]Tangavelu, S., Harmonic analysis on the Heisenberg group, Progr. Math. 159 (Birkhäuser, Boston, 1998).CrossRefGoogle Scholar
[16]Thangavelu, S., ‘An analogue of Hardy's theorem for the Heisenberg group’, Colloq. Math. 87 (2001), 137145.CrossRefGoogle Scholar
[17]Thangavelu, S., ‘Revisiting Hardy's theorem for the Heisenberg group’, Math. Z. 242 (2002), 761779.CrossRefGoogle Scholar
[18]Thangavelu, S., An introduction to the uncertainty principle, Progr. Math. 217 (Birkhäuser, Boston, 2003).Google Scholar
[19]Thangavelu, S., ‘On theorems of Hardy, Gelfand-Shilov and Beurling for semisimple Lie groups’, Publ. Res. Inst. Math. Sci. 40 (2004), 311344.CrossRefGoogle Scholar