Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T09:05:30.571Z Has data issue: false hasContentIssue false

An action of the Klein four-group on the irrational rotation C*-algebra

Published online by Cambridge University Press:  17 April 2009

P.J. Stacey
Affiliation:
School of MathematicsLa Trobe UniversityBundoora Vic 3083Australia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Explicit automorphisms of the irrational rotation algebra are constructed which are associated with the two 2 × 2 diagonal integer matrices of determinant −1. The fixed point algebra of the product of these two automorphisms is shown to be isomorphic to the fixed point algebra of the flip.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1997

References

[1]Blackadar, B., K-theory for operator algebras (Springer-Verlag, Berlin, Heidelberg, New York, 1986).CrossRefGoogle Scholar
[2]Blackadar, B., ‘Traces on simple AF C*-algebras’, J. Funct. Anal. 38 (1980), 156168.CrossRefGoogle Scholar
[3]Bratteli, O., Elliott, G.A., Evans, D.E. and Kishimoto, A., ‘Non-commutative spheres I’, Internat. J. Math. 2 (1991), 139166.CrossRefGoogle Scholar
[4]Bratteli, O., Elliott, G.A., Evans, D.E. and Kishimoto, A., ‘Non-commutative spheres II: rational rotations’, J. Operator Theory 27 (1992), 5385.Google Scholar
[5]Bratteli, O. and Kishimoto, A., ‘Non-commutative spheres III: irrational rotations’, Comm. Math. Phys. 147 (1992), 605624.CrossRefGoogle Scholar
[6]Brenken, B., ‘Representations and automorphisms of the irrational rotation algebra’, Pacific J. Math. 111 (1984), 257282.CrossRefGoogle Scholar
[7]Dixmier, J., Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1964).Google Scholar
[8]Elliott, G.A., ‘On the classification of C*-algebras of real rank zero’, J. Reine Angew. Math. 443 (1993), 179219.Google Scholar
[9]Elliott, G.A. and Evans, D.E., ‘The structure of the irrational rotation C*-algebra’, Ann. of Math. 138 (1993), 477501.CrossRefGoogle Scholar
[10]Evans, D.E. and Kishimoto, A., ‘Compact group actions on UHF algebras obtained by folding the interval’, J. Funct. Anal. 98 (1991), 346360.CrossRefGoogle Scholar
[11]Kumjian, A., ‘On the K-theory of the symmetrized non-commutative torus’, C.R. Math. Rep. Acad. Sci. Canada 12 (1990), 8789.Google Scholar
[12]Pedersen, G.K., C*-algebras and their automorphism groups (Academic Press, London, 1979).Google Scholar
[13]Su, H., ‘On the classification of C*-algebras of real rank zero: inductive limits of matrix algebras over graphs’, C.R. Math. Rep. Acad. Sci. Canada 13 (1991), 223228.Google Scholar
[14]Su, H., ‘On the classification of C*-algebras of real rank zero: inductive limits of matrix algebras over non-Hausdorff graphs’, Mem. Amer. Math. Soc. 547 (1995).Google Scholar
[15]Walters, S.G., ‘Projective modules over the non-commutative sphere’, J. London Math. Soc. 51 (1995), 589602.CrossRefGoogle Scholar
[16]Walters, S.G., ‘Inductive limit automorphisms of the irrational rotation algebra’, Comm. Math. Phys. 171 (1995), 365381.CrossRefGoogle Scholar
[17]Watatani, Y., ‘Toral automorphisms on irrational rotation algebras’, Math. Japon 26 (1981), 479484.Google Scholar